全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

DOI: 10.1155/2012/406796

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. 1. Early Cell Fate Decisions in the Hematopoietic System: Unidirectional and Irreversible? Mature cells within the hierarchical hematopoietic system, are conventionally classified into two major lineages: lymphoid and myeloid. The lymphoid lineage consists of B, T, and natural killer (NK) cells, whereas the myeloid lineage includes erythrocytes, megakaryocytes, mast cells, granulocytes, monocytes, and macrophages. A number of subtypes of dendritic cells (DC) are generated via the pathways of lymphoid or myeloid differentiation [1–3]. Starting in the very primitive multipotential hematopoietic stem cells (HSC), lineage commitment proceeds after a gradual process of cell differentiation and concomitant series of ordered lineage exclusions. As progenitor cells progress through the pathway, their differentiation capabilities narrow, and at the point where potential limits the fate, the precursors become now-committed [4]. It is believed that once a cell is committed to a given lineage, its fate must be set due to precise combinations of lineage transcription factors and epigenetic modifications to the chromatin [5]. However, considering that hematopoiesis implies a continuing dialogue between developing cells and the surrounding microenvironmental cues [4], the unidirectional and irreversible

References

[1]  R. Pelayo, R. Welner, S. S. Perry et al., “Lymphoid progenitors and primary routes to becoming cells of the immune system,” Current Opinion in Immunology, vol. 17, no. 2, pp. 100–107, 2005.
[2]  R. Pelayo, K. Miyazaki, J. Huang, K. P. Garrett, D. G. Osmond, and P. W. Kincade, “Cell cycle quiescence of early lymphoid progenitors in adult bone marrow,” Stem Cells, vol. 24, no. 12, pp. 2703–2713, 2006.
[3]  R. S. Welner, R. Pelayo, and P. W. Kincade, “Evolving views on the genealogy of B cells,” Nature Reviews Immunology, vol. 8, no. 2, pp. 95–106, 2008.
[4]  E. V. Rothenberg, “T cell lineage commitment: identity and renunciation,” Journal of Immunology, vol. 186, no. 12, pp. 6649–6655, 2011.
[5]  H. Xie and S. H. Orkin, “Immunology: changed destiny,” Nature, vol. 449, no. 7161, pp. 410–411, 2007.
[6]  R. Pelayo, J. Hirose, J. Huang et al., “Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow,” Blood, vol. 105, no. 11, pp. 4407–4415, 2005.
[7]  R. S. Welner, R. Pelayo, K. P. Garrett et al., “Interferon-producing killer dendritic cells (IKDCs) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors,” Blood, vol. 109, no. 11, pp. 4825–4931, 2007.
[8]  H. Iwasaki and K. Akashi, “Hematopoietic developmental pathways: on cellular basis,” Oncogene, vol. 26, no. 47, pp. 6687–6696, 2007.
[9]  B. Blom and H. Spits, “Development of human lymphoid cells,” Annual Review of Immunology, vol. 24, pp. 287–320, 2006.
[10]  S. Doulatov, F. Notta, E. Laurenti, and J. E. Dick, “Hematopoiesis: a human perspective,” Cell Stem Cell, vol. 10, no. 2, pp. 120–136, 2012.
[11]  S. Doulatov, F. Notta, K. Eppert, L. T. Nguyen, P. S. Ohashi, and J. E. Dick, “Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development,” Nature Immunology, vol. 11, no. 7, pp. 585–593, 2010.
[12]  Y. Baba, R. Pelayo, and P. W. Kincade, “Relationships between hematopoietic stem cells and lymphocyte progenitors,” Trends in Immunology, vol. 25, no. 12, pp. 645–649, 2004.
[13]  P. Perez-Vera, A. Reyes-Leon, and E. M. Fuentes-Panana, “Signaling proteins and transcription factors in normal and malignant early B cell development,” Bone Marrow Research, vol. 2011, Article ID 502751, 2011.
[14]  R. Pelayo, E. Dorantes-Acosta, E. Vadillo, and E. Fuentes-Panana, “From HSC to B-lymphoid cells in normal and malignant hematopoiesis,” in Advances in Hematopoietic Stem Cell Research, R. Pelayo, Ed., InTech, 2012.
[15]  J. M. Pongubala, D. L. Northrup, D. W. Lancki et al., “Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5,” Nature Immunology, vol. 9, no. 2, pp. 203–215, 2008.
[16]  S. L. Nutt, B. Heavey, A. G. Rolink, and M. Busslinger, “Commitment to the B-lymphoid lineage depends on the transcription factor Pax5,” Nature, vol. 401, no. 6753, pp. 556–562, 1999.
[17]  C. Cobaleda, W. Jochum, and M. Busslinger, “Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors,” Nature, vol. 449, no. 7161, pp. 473–477, 2007.
[18]  C. V. Laiosa, M. Stadtfeld, H. Xie, L. de Andres-Aguayo, and T. Graf, “Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors,” Immunity, vol. 25, no. 5, pp. 731–744, 2006.
[19]  H. Iwasaki, S. I. Mizuno, Y. Arinobu et al., “The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages,” Genes and Development, vol. 20, no. 21, pp. 3010–3021, 2006.
[20]  M. Kondo, D. C. Scherer, T. Miyamoto et al., “Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines,” Nature, vol. 407, no. 6802, pp. 383–386, 2000.
[21]  R. S. Welner, R. Pelayo, Y. Nagai et al., “Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection,” Blood, vol. 112, no. 9, pp. 3753–3761, 2008.
[22]  M. T. Baldridge, K. Y. King, N. C. Boles, D. C. Weksberg, and M. A. Goodell, “Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection,” Nature, vol. 465, no. 7299, pp. 793–797, 2010.
[23]  J. R. Boiko and L. Borghesi, “Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells,” Cytokine, vol. 57, no. 1, pp. 1–8, 2012.
[24]  K. De Luca, V. Frances-Duvert, M. J. Asensio et al., “The TLR1/2 agonist PAM3CSK4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate,” Leukemia, vol. 23, no. 11, pp. 2063–2074, 2009.
[25]  M. Sioud and Y. Floisand, “TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response,” European Journal of Immunology, vol. 37, no. 10, pp. 2834–2846, 2007.
[26]  Y. Nagai, K. P. Garrett, S. Ohta et al., “Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment,” Immunity, vol. 24, no. 6, pp. 801–812, 2006.
[27]  P. G. Heyworth, D. Noack, and A. R. Cross, “Identification of a novel NCF-1 (p47-phox) pseudogene not containing the signature GT deletion: significance for A47 degrees chronic granulomatous disease carrier detection,” Blood, vol. 100, no. 5, pp. 1845–1851, 2002.
[28]  M. L. Perez-Saldivar, A. Fajardo-Gutiérrez, R. Bernáldez-Ríos, et al., “Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology,” British Medical Journal, vol. 11, article 355, 2011.
[29]  J. M. Bennett, D. Catovsky, M.-T. Daniel, et al., “Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group,” British Journal of Haematology, vol. 33, no. 4, pp. 451–458, 1976.
[30]  J. M. Bennett, D. Catovsky, M. T. Daniel et al., “Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group,” Annals of Internal Medicine, vol. 103, no. 4, pp. 620–625, 1985.
[31]  J. G. Jiang, E. Roman, S. V. Nandula, V. V. S. Murty, G. Bhagat, and B. Alobeid, “Congenital MLL-positive B-cell acute lymphoblastic leukemia (B-ALL) switched lineage at relapse to acute myelocytic leukemia (AML) with persistent t(4;11) and t(1;6) translocations and JH gene rearrangement,” Leukemia and Lymphoma, vol. 46, no. 8, pp. 1223–1227, 2005.
[32]  H. Shimizu, S. J. Culbert, A. Cork, and J. J. Iacuone, “A lineage switch in acute monocytic leukemia. A case report,” American Journal of Pediatric Hematology/Oncology, vol. 11, no. 2, pp. 162–166, 1989.
[33]  M. Krawczuk-Rybak, J. Zak, and B. Jaworowska, “A lineage switch from AML to ALL with persistent translocation t(4;11) in congenital leukemia,” Medical and Pediatric Oncology, vol. 41, no. 1, pp. 95–96, 2003.
[34]  S. A. Ridge, M. E. Cabrera, A. M. Ford et al., “Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement,” Leukemia, vol. 9, no. 12, pp. 2023–2026, 1995.
[35]  H. Sakaki, H. Kanegane, K. Nomura et al., “Early lineage switch in an infant acute lymphoblastic leukemia,” International Journal of Hematology, vol. 90, no. 5, pp. 653–655, 2009.
[36]  M. Park, K. N. Koh, B. E. Kim et al., “Lineage switch at relapse of childhood acute leukemia: a report of four cases,” Journal of Korean Medical Science, vol. 26, no. 6, pp. 829–831, 2011.
[37]  C. Stasik, S. Ganguly, M. T. Cunningham, S. Hagemeister, and D. L. Persons, “Infant acute lymphoblastic leukemia with t(11;16)(q23;p13.3) and lineage switch into acute monoblastic leukemia,” Cancer Genetics and Cytogenetics, vol. 168, no. 2, pp. 146–149, 2006.
[38]  M. L. Bernstein, D. W. Esseltine, J. Emond, and M. Vekemans, “Acute lymphoblastic leukemia at relapse in a child with acute myeloblastic leukemia,” American Journal of Pediatric Hematology/Oncology, vol. 8, no. 2, pp. 153–157, 1986.
[39]  E. Dorantes-Acosta, F. Arreguin-Gonzalez, C. A. Rodriguez-Osorio, S. Sadowinski, R. Pelayo, and A. Medina-Sanson, “Acute myelogenous leukemia switch lineage upon relapse to acute lymphoblastic leukemia: a case report,” Cases Journal, vol. 2, article 154, 2009.
[40]  Y. Ikarashi, T. Kakihara, C. Imai, A. Tanaka, A. Watanabe, and M. Uchiyama, “Double leukemias simultaneously showing lymphoblastic leukemia of the bone marrow and monocytic leukemia of the central nervous system,” American Journal of Hematology, vol. 75, no. 3, pp. 164–167, 2004.
[41]  A. Emami, Y. Ravindranath, and S. Inoue, “Phenotypic change of acute monocytic leukemia to acute lymphoblastic leukemia on therapy,” American Journal of Pediatric Hematology/Oncology, vol. 5, no. 4, pp. 341–343, 1983.
[42]  H. J. Chung, C. J. Park, S. Jang, H. S. Chi, E. J. Seo, and J. J. Seo, “A case of lineage switch from acute lymphoblastic leukemia to acute myeloid leukemia,” The Korean Journal of Laboratory Medicine, vol. 27, no. 2, pp. 102–105, 2007.
[43]  H. Podgornik, M. Debeljak, D. ?ontar, P. ?ernel?, V. V. Prestor, and J. Jazbec, “RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia,” Cancer Genetics and Cytogenetics, vol. 178, no. 1, pp. 77–81, 2007.
[44]  E. Mantadakis, V. Danilatou, E. Stiakaki, G. Paterakis, S. Papadhimitriou, and M. Kalmanti, “T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia,” Pediatric Blood and Cancer, vol. 48, no. 3, pp. 354–357, 2007.
[45]  W. van den Ancker, M. Terwijn, J. Regelink et al., “Uncommon lineage switch warrants immunophenotyping even in relapsing leukemia,” Leukemia Research, vol. 33, no. 7, pp. e77–e80, 2009.
[46]  J. W. Vardiman, J. Thiele, D. A. Arber et al., “The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes,” Blood, vol. 114, no. 5, pp. 937–951, 2009.
[47]  M. C. Bene, G. Castoldi, W. Knapp et al., “Proposals for the immunological classification of acute leukemias,” Leukemia, vol. 9, no. 10, pp. 1783–1786, 1995.
[48]  E. Matutes, W. F. Pickl, M. V. Veer et al., “Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification,” Blood, vol. 117, no. 11, pp. 3163–3171, 2011.
[49]  K. Akashi, “Lymphoid lineage fate decision of hematopoietic stem cells,” Annals of the New York Academy of Sciences, vol. 1176, pp. 18–25, 2009.
[50]  S. Bomken, K. Fi?er, O. Heidenreich, and J. Vormoor, “Understanding the cancer stem cell,” British Journal of Cancer, vol. 103, no. 4, pp. 439–445, 2010.
[51]  F. Davi, C. Gocke, S. Smith, and J. Sklar, “Lymphocytic progenitor cell origin and clonal evolution of human B-lineage acute lymphoblastic leukemia,” Blood, vol. 88, no. 2, pp. 609–621, 1996.
[52]  T. Stankovic, V. Weston, C. M. McConville et al., “Clonal diversity of Ig and T-cell receptor gene rearrangements in childhood B-precursor acute lymphoblastic leukaemia,” Leukemia and Lymphoma, vol. 36, no. 3-4, pp. 213–224, 2000.
[53]  C. V. Cox, P. Diamanti, R. S. Evely, P. R. Kearns, and A. Blair, “Expression of CD133 on leukemia-initiating cells in childhood ALL,” Blood, vol. 113, no. 14, pp. 3287–3296, 2009.
[54]  O. Heidenreich and J. Vormoor, “Malignant stem cells in childhood ALL: the debate continues,” Blood, vol. 113, no. 18, pp. 4476–4477, 2009.
[55]  C. le Viseur, M. Hotfilder, S. Bomken et al., “In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties,” Cancer Cell, vol. 14, no. 1, pp. 47–58, 2008.
[56]  A. Colmone, M. Amorim, A. L. Pontier, S. Wang, E. Jablonski, and D. A. Sipkins, “Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells,” Science, vol. 322, no. 5909, pp. 1861–1865, 2008.
[57]  G. A. Gagnon, C. C. Childs, A. LeMaistre et al., “Molecular heterogeneity in acute leukemia lineage switch,” Blood, vol. 74, no. 6, pp. 2088–2095, 1989.
[58]  S. Stass, J. Mirro, and S. Melvin, “Lineage switch in acute leukemia,” Blood, vol. 64, no. 3, pp. 701–706, 1984.
[59]  O. Imataki, H. Ohnishi, G. Yamaoka et al., “Lineage switch from precursor B cell acute lymphoblastic leukemia to acute monocytic leukemia at relapse,” International Journal of Clinical Oncology, vol. 15, no. 1, pp. 112–115, 2010.
[60]  D. Bresters, A. C. W. Reus, A. J. P. Veerman, E. R. Van Wering, A. Van Der Does-Van Den Berg, and G. J. L. Kaspers, “Congenital leukaemia: the Dutch experience and review of the literature,” British Journal of Haematology, vol. 117, no. 3, pp. 513–524, 2002.
[61]  M. C. Fernandez, B. Weiss, S. Atwater, K. Shannon, and K. K. Matthay, “Congenital leukemia: successful treatment of a newborn with t(5;11)(q31;q23),” Journal of Pediatric Hematology/Oncology, vol. 21, no. 2, pp. 152–157, 1999.
[62]  J. Purizaca, I. Meza, and R. Pelayo, “Early lymphoid development and microenvironmental cues in B-cell acute lymphoblastic leukemia,” Archives of Medical Research, vol. 43, no. 2, pp. 89–101, 2012.
[63]  K. R. Rabin, “Attacking remaining challenges in childhood leukemia,” The New England Journal of Medicine, vol. 366, no. 15, pp. 1445–1446, 2012.
[64]  M. Schrappe, S. P. Hunger, C.-H. Pui, et al., “Outcomes after induction failure in childhood acute lymphoblastic leukemia,” The New England Journal of Medicine, vol. 366, no. 15, pp. 1371–1381, 2012.
[65]  C. H. Pui, S. C. Raimondi, and F. G. Behm, “Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia,” Blood, vol. 68, no. 6, pp. 1306–1310, 1986.
[66]  C. Cobaleda, “Reprogramming of B cells,” Methods in Molecular Biology, vol. 636, pp. 233–250, 2010.
[67]  H. Kawamoto and Y. Katsura, “A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy,” Trends in Immunology, vol. 30, no. 5, pp. 193–200, 2009.
[68]  J. J. Bell and A. Bhandoola, “The earliest thymic progenitors for T cells possess myeloid lineage potential,” Nature, vol. 452, no. 7188, pp. 764–767, 2008.
[69]  T. Palomero, K. McKenna, J. O-Neil et al., “Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias,” Leukemia, vol. 20, no. 11, pp. 1963–1966, 2006.
[70]  F. Weerkamp, T. C. Luis, B. A. E. Naber et al., “Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program,” Leukemia, vol. 20, no. 11, pp. 1967–1977, 2006.
[71]  J. E. Rubnitz, M. Onciu, S. Pounds et al., “Acute mixed lineage leukemia in children: the experience of St Jude Children's Research Hospital,” Blood, vol. 113, no. 21, pp. 5083–5089, 2009.
[72]  E. G. Weir, M. A. Ansari-Lari, D. A. S. Batista et al., “Acute bilineal leukemia: a rare disease with poor outcome,” Leukemia, vol. 21, no. 11, pp. 2264–2270, 2007.
[73]  G. Zardo, G. Cimino, and C. Nervi, “Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/ progenitor cells: therapeutic potential of cell reprogramming,” Leukemia, vol. 22, no. 8, pp. 1503–1518, 2008.
[74]  M. Messina, S. Chiaretti, I. Iacobucci et al., “AICDA expression in BCR/ABL1-positive acute lymphoblastic leukaemia is associated with a peculiar gene expression profile,” British Journal of Haematology, vol. 152, no. 6, pp. 727–732, 2011.
[75]  R. Strauss, P. Hamerlik, A. Lieber, and J. Bartek, “Regulation of stem cell plasticity: mechanisms and relevance to tissue biology and cancer,” Molecular Therapy, vol. 20, no. 5, pp. 887–897, 2012.
[76]  T. Graf, “Differentiation plasticity of hematopoietic cells,” Blood, vol. 99, no. 9, pp. 3089–3101, 2002.
[77]  B. Falini and D. Y. Mason, “Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry,” Blood, vol. 99, no. 2, pp. 409–426, 2002.
[78]  E. Smith and M. Sigvardsson, “The roles of transcription factors in B lymphocyte commitment, development, and transformation,” Journal of Leukocyte Biology, vol. 75, no. 6, pp. 973–981, 2004.
[79]  M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007.
[80]  K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006.
[81]  R. Jaenisch and R. Young, “Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming,” Cell, vol. 132, no. 4, pp. 567–582, 2008.
[82]  E. R. Panzer-Grümayer, G. Cazzaniga, V. H. J. Van Der Velden et al., “Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection,” Clinical Cancer Research, vol. 11, no. 21, pp. 7720–7727, 2005.
[83]  G. J. Ruiz-Argüelles, A. Ruiz-Argüelles, and J. Garcés-Eisele, “Donor cell leukemia: a critical review,” Leukemia and Lymphoma, vol. 48, no. 1, pp. 25–38, 2007.
[84]  S. A. Schichman, P. Suess, A. M. Vertino, and P. S. Gray, “Comparison of short tandem repeat and variable number tandemrepeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment,” Bone Marrow Transplantation, vol. 29, no. 3, pp. 243–248, 2002.
[85]  I. Bu?o, P. Nava, A. Simón et al., “A comparison of fluorescent in situ hybridization and multiplex short tandem repeat polymerase chain reaction for quantifying chimerism after stem cell transplantation,” Haematologica, vol. 90, no. 10, pp. 1373–1379, 2005.
[86]  C. M. Flynn and D. S. Kaufman, “Donor cell leukemia: insight into cancer stem cells and the stem cell niche,” Blood, vol. 109, no. 7, pp. 2688–2692, 2007.
[87]  M. Heuser, G. Park, Y. Moon et al., “Extrinsic signals determine myeloid-erythroid lineage switch in MN1 leukemia,” Experimental Hematology, vol. 38, no. 3, pp. 174–179, 2010.
[88]  A. G. Muntean and J. L. Hess, “MLL-AF9 leukemia stem cells: hardwired or taking cues from the microenvironment?” Cancer Cell, vol. 13, no. 6, pp. 465–467, 2008.
[89]  C. W. So, H. Karsunky, E. Passegué, A. Cozzio, I. L. Weissman, and M. L. Cleary, “MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice,” Cancer Cell, vol. 3, no. 2, pp. 161–171, 2003.
[90]  J. Wei, M. Wunderlich, C. Fox et al., “Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia,” Cancer Cell, vol. 13, no. 6, pp. 483–495, 2008.
[91]  L. Espinoza-Hernández, J. Cruz-Rico, H. Benítez-Aranda et al., “In vitro characterization of the hematopoietic system in pediatric patients with acute lymphoblastic leukemia,” Leukemia Research, vol. 25, no. 4, pp. 295–303, 2001.
[92]  D. Mueller, M. P. García-Cuéllar, C. Bach, S. Buhl, E. Maethner, and R. K. Slany, “Misguided transcriptional elongation causes mixed lineage leukemia,” PLoS Biology, vol. 7, no. 11, Article ID e1000249, 2009.
[93]  M. S. Hayden and S. Ghosh, “NF-κB in immunobiology,” Cell Research, vol. 21, no. 2, pp. 223–244, 2011.
[94]  P. Tsapogas, S. Zandi, J. ?hsberg, et al., “IL-7 mediates Ebf-1-dependent lineage restriction in early lymphoid progenitors,” Blood, vol. 118, no. 5, pp. 1283–1290, 2011.
[95]  E. Chen, L. M. Staudt, and A. R. Green, “Janus kinase deregulation in leukemia and lymphoma,” Immunity, vol. 36, no. 4, pp. 529–541, 2012.
[96]  B. Kovacic, A. Hoelbl, G. Litos, et al., “Diverging fates of cells of origin in acute and chronic leukaemia,” EMBO Molecular Medicine, vol. 4, no. 4, pp. 283–297, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133