全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Rising Infection: Human Herpesvirus 6 Is Frequent in Myeloma Patients Undergoing Autologous Stem Cell Transplantation after Induction Therapy with Bortezomib

DOI: 10.1155/2012/409765

Full-Text   Cite this paper   Add to My Lib

Abstract:

Herpesvirus 6 (HHV-6) infection is a common complication during immunosuppression. Its significance for multiple myeloma (MM) patients undergoing autologous stem cell transplantation (ASCT) after treatment with novel agents affecting immune system remains undetermined. Data on 62 consecutive MM patients receiving bortezomib-dexamethasone (VD) ( ; 66%) or thalidomide-dexamethasone (TD) ( , 34%) induction, together with melphalan 200?mg/m2 autograft between 01.2005 and 09.2010, were reviewed. HHV-6 reactivation was diagnosed in patients experiencing postengraftment unexplained fever (PEUF) in the presence of any level of HHHV-6 DNA in blood. There were no statistically significant differences in patient characteristics between the groups, excluding dexamethasone dosage, which was significantly higher in patients receiving TD. Eight patients in TD and 18 in VD cohorts underwent viral screening for PEUF. HHV-6 reactivation was diagnosed in 10 patients of the entire series (16%), accounting for 35% of those screened; its incidence was 19.5% ( ) in the VD group versus 9.5% ( ) in the TD group. All patients recovered without sequelae. In conclusion, HHV-6 reactivation is relatively common after ASCT, accounting for at least a third of PEUF episodes. Further studies are warranted to investigate whether bortezomib has an impact on HHV-6 reactivation development. 1. Introduction Human herpesvirus 6 (HHV-6) is highly prevalent in humans, infecting almost all children during their early childhood [1–4]. Similar to other herpesviruses, it tends to remain dormant in the host tissues, but may reactivate in the presence of immune suppression, resulting in a febrile illness, often accompanied with skin eruption, encephalitis, or pneumonia [5–11]. Immune dysfunction, existing following allogeneic stem cell transplantation (Allo SCT), induced by either immunosuppressive drugs or the development of graft-versus-host disease (GvHD) appears to result in a significant risk of HHV-6 reactivation [12], approaching 33–48% [13–16]. Unlike Allo SCT, autologous stem cell transplantation (ASCT), being associated with mild transient immunodeficiency, has been traditionally considered a less probable cause of HHV-6 reactivation. However, studies exploring this risk in heterogeneous groups of autografted patients reported a similarly high risk for HHV-6 infection [16], suggesting the malignancy itself, and/or the treatment applied preautograft, to contribute to transplant-associated immune impairment. Induction therapy for myeloma has changed dramatically over the last few years and

References

[1]  K. Takahashi, S. Sonoda, K. Higashi et al., “Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus,” Journal of Virology, vol. 63, no. 7, pp. 3161–3163, 1989.
[2]  R. W. Cone, M. L. W. Huang, R. Ashley, and L. Corey, “Human herpesvirus 6 DNA in peripheral blood cells and saliva from immunocompetent individuals,” Journal of Clinical Microbiology, vol. 31, no. 5, pp. 1262–1267, 1993.
[3]  N. Singh and D. R. Carrigan, “Human herpesvirus-6 in transplantation: an emerging pathogen,” Annals of Internal Medicine, vol. 124, no. 12, pp. 1065–1071, 1996.
[4]  D. K. Braun, G. Dominguez, and P. E. Pellett, “Human herpesvirus 6,” Clinical Microbiology Reviews, vol. 10, no. 3, pp. 521–567, 1997.
[5]  G. Campadelli-Fiume, P. Mirandola, and L. Menotti, “Human herpesvirus 6: an emerging pathogen,” Emerging Infectious Diseases, vol. 5, no. 3, pp. 353–366, 1999.
[6]  J. D. Fox, M. Briggs, P. A. Ward, and R. S. Tedder, “Human herpesvirus 6 in salivary glands,” Lancet, vol. 336, no. 8715, pp. 590–593, 1990.
[7]  R. F. Jarrett, D. A. Clark, S. F. Josephs, and D. E. Onions, “Detection of human herpesvirus-6 DNA in peripheral blood and saliva,” Journal of Medical Virology, vol. 32, no. 1, pp. 73–76, 1990.
[8]  P. K. Chan, H. K. Ng, M. Hui, and A. F. Cheng, “Prevalence and distribution of human herpesvirus 6 variants A and B in adult human brain,” Journal of Medical Virology, vol. 64, no. 1, pp. 42–46, 2001.
[9]  D. Donati, N. Akhyani, A. Fogdell-Hahn et al., “Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections,” Neurology, vol. 61, no. 10, pp. 1405–1411, 2003.
[10]  K. Kondo, T. Kondo, T. Okuno, M. Takahashi, and K. Ymanishi, “Latent human herpesvirus 6 infection of human monocytes/macrophages,” Journal of General Virology, vol. 72, no. 6, pp. 1401–1408, 1991.
[11]  M. Luppi, P. Barozzi, C. Morris et al., “Human herpesvirus 6 latently infects early bone marrow progenitors in vivo,” Journal of Virology, vol. 73, no. 1, pp. 754–759, 1999.
[12]  D. M. Zerr, M. Boeckh, and C. Delaney, “HHV-6 reactivation and associated sequelae after hematopoietic cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 18, no. 11, pp. 1700–1708, 2012.
[13]  M. P. Kadakia, “Human herpesvirus 6 infection and associated pathogenesis following bone marrow transplantation,” Leukemia and Lymphoma, vol. 31, no. 3-4, pp. 251–266, 1998.
[14]  H. G. Prentice, E. Gluckman, R. L. Powles et al., “Impact of long-term acyclovir on cytomegalovirus infection and survival after allogeneic bone marrow transplantation,” Lancet, vol. 343, no. 8900, pp. 749–753, 1994.
[15]  H. Glucksberg, R. Storb, and A. Fefer, “Clinical manifestations of graft versus host disease in human recipients of marrow from HL A matched sibling donors,” Transplantation, vol. 18, no. 4, pp. 295–304, 1974.
[16]  B. M. Imbert-Marcille, X. W. Tang, D. Lepelletier et al., “Human herpesvirus 6 infection after autologous or allogeneic stem cell transplantation: a single-center prospective longitudinal study of 92 patients,” Clinical Infectious Diseases, vol. 31, no. 4, pp. 881–886, 2000.
[17]  A. Palumbo and K. Anderson, “Multiple myeloma,” New England Journal of Medicine, vol. 364, no. 11, pp. 1046–1060, 2011.
[18]  S. V. Rajkumar, “Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management,” American Journal of Hematology, vol. 87, no. 1, pp. 78–88, 2012.
[19]  F. Davies and R. Baz, “Lenalidomide mode of action: linking bench and clinical findings,” Blood Reviews, vol. 24, no. 1, supplement, pp. S13–S19, 2010.
[20]  D. S. Ritchie, H. Quach, K. Fielding, and P. Neeson, “Drug-mediated and cellular immunotherapy in multiple myeloma,” Immunotherapy, vol. 2, no. 2, pp. 243–255, 2010.
[21]  G. L. Uy, S. Peles, N. M. Fisher, M. H. Tomasson, J. F. DiPersio, and R. Vij, “Bortezomib prior to autologous transplant in multiple myeloma: effects on mobilization, engraftment, and markers of immune function,” Biology of Blood and Marrow Transplantation, vol. 12, supplement 1, article 116a, 2006.
[22]  B. Blanco, J. A. Pérez-Simón, L. I. Sánchez-Abarca et al., “Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines,” Blood, vol. 107, no. 9, pp. 3575–3583, 2006.
[23]  A. Nencioni, A. Garuti, K. Schwarzenberg et al., “Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells,” European Journal of Immunology, vol. 36, no. 3, pp. 681–689, 2006.
[24]  A. Nencioni, K. Schwarzenberg, K. M. Brauer et al., “Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation,” Blood, vol. 108, no. 2, pp. 551–558, 2006.
[25]  A. Chanan-Khan, P. Sonneveld, M. W. Schuster et al., “Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study,” Journal of Clinical Oncology, vol. 26, no. 29, pp. 4784–4790, 2008.
[26]  N. P. Tavakoli, S. Nattanmai, R. Hull et al., “Detection and typing of human herpesvirus 6 by molecular methods in specimens from patients diagnosed with encephalitis or meningitis,” Journal of Clinical Microbiology, vol. 45, no. 12, pp. 3972–3978, 2007.
[27]  A. J. Wakefield, J. D. Fox, A. M. Sawyerr et al., “Detection of herpesvirus DNA in the large intestine of patients with ulcerative colitis and Crohn's disease using the nested polymerase chain reaction,” Journal of Medical Virology, vol. 38, no. 3, pp. 183–190, 1992.
[28]  M. P. Kadakia, W. B. Rybka, J. A. Stewart et al., “Human herpesvirus 6: infection and disease following autologous and allogeneic bone marrow transplantation,” Blood, vol. 87, no. 12, pp. 5341–5354, 1996.
[29]  H. Miyoshi, K. Tanaka-Taya, J. Hara et al., “Inverse relationship between human herpesvirus-6 and -7 detection after allogeneic and autologous stem cell transplantation,” Bone Marrow Transplantation, vol. 27, no. 10, pp. 1065–1070, 2001.
[30]  S. V. Rajkumar, “Multiple myeloma: 2011 update on diagnosis, risk-stratification, and management,” American Journal of Hematology, vol. 86, no. 1, pp. 57–65, 2011.
[31]  S. J. Kim, K. Kim, B. S. Kim et al., “Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma,” Clinical Lymphoma and Myeloma, vol. 8, no. 4, pp. 237–240, 2008.
[32]  D. M. Zerr, J. R. Fann, D. Breiger et al., “HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients,” Blood, vol. 117, no. 19, pp. 5243–5249, 2011.
[33]  J. I. Cohen, P. A. Brunell, S. E. Straus, and P. R. Krause, “Recent advances in varicella-zoster virus infection,” Annals of Internal Medicine, vol. 130, no. 11, pp. 922–932, 1999.
[34]  P. Schütt, D. Brandhorst, W. Stellberg et al., “Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections,” Leukemia and Lymphoma, vol. 47, no. 8, pp. 1570–1582, 2006.
[35]  G. Mele, S. Pinna, A. Quarta, M. Brocca, M. R. Coppi, and G. Quarta, “Increased incidence of Herpes Zoster in relapsed multiple myeloma patients receiving bortezomib: single institution experience,” Haematologica, vol. 90, supplement 2, pp. 432a–433a, 2005.
[36]  H. S. Lee, J. Y. Park, S. H. Shin et al., “Herpesviridae viral infections after chemotherapy without antiviral prophylaxis in patients with malignant lymphoma: incidence and risk factors,” American Journal of Clinical Oncology, vol. 35, pp. 146–150, 2011.
[37]  T. M. Tohnya and W. D. Figg, “Immunomodulation of multiple myeloma,” Cancer Biology and Therapy, vol. 3, no. 11, pp. 1060–1061, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133