Occurrence and Impact of Minor Histocompatibility Antigens' Disparities on Outcomes of Hematopoietic Stem Cell Transplantation from HLA-Matched Sibling Donors
We have examined the alleles of eleven minor histocompatibility antigens (MiHAs) and investigated the occurrence of immunogenic MiHA disparities in 62 recipients of allogeneic hematopoietic cell transplantation (allo-HCT) with myeloablative conditioning performed between 2000 and 2008 and in their HLA-matched sibling donors. Immunogenic MiHA mismatches were detected in 42 donor-recipient pairs: in 29% MiHA was mismatched in HVG direction, in another 29% in GVH direction; bidirectional MiHA disparity was detected in 10% and no MiHA mismatches in 32%. Patients with GVH-directed HY mismatches had lower both overall survival and disease-free survival at 3 years than patients with compatible HY; also higher incidence of both severe acute GvHD and extensive chronic GVHD was observed in patients with GVH-directed HY mismatch. On contrary, GVH-directed mismatches of autosomally encoded MiHAs had no negative effect on overall survival. Results of our study help to understand why posttransplant courses of allo-HCT from siblings may vary despite the complete high-resolution HLA matching of a donor and a recipient. 1. Introduction The allogeneic hematopoietic cell transplantation (allo-HCT) still remains a curative treatment of many severe diseases, especially hematooncological malignancies. The successful donor search is one of the most important factors deciding about the feasibility of transplantation. It starts with search among the patient’s siblings as the HLA-matched sibling donor is regarded as the optimal one. The odds ratio for HLA compatibility in siblings is 1?:?4. The probability of having a matched sibling donor by a particular patient is determined by the formula , where equals the number of siblings. Despite the improved matching of donor-recipient pairs that was possible after the implementation of high-resolution methods of molecular HLA typing, the better outcomes of transplantations are still limited by high number of complications: graft versus host disease (GVHD), engraftment problems (lack or loss of engraftment), and relapse [1]. The long-term survival after allo-HCT is being estimated in the range of 40–70%. Failures are mainly due to infectious complications and GVHD (30–40% each), organ toxicity of chemotherapy (20%), and relapse (20–30%) [2]. HLA matching remains the most important factor influencing both donor selection and transplantation outcomes. However, research of the human genome revealed that polymorphism of nucleotides in genes that are non-HLA related (e.g., NOD2/CARD15 or genes encoding cytokines: TNF-alpha, IL-10, IL-6,
References
[1]
H. Greinix, “Introduction,” in Graft -Versus-Host Disease, H. T. Greinix, Ed., pp. 14–15, Unimed Verlag AG, 2008.
[2]
A. Szczeklik, et al., “Internal Medicine State of the art in 2011,” in Practical Medicine, A. Szczeklik, Ed., chapter 6K3, pp. 1683–1690, 2011.
[3]
B. E. Shaw and A. Madrigal, “Immunogenetics of allogeneic HSCT,” in Haematopoietic Stem Cell Transplantation, ESH-EBMT Handbook, J. Apperley, E. Carreras, E. Gluckman, and T. Masszi, Eds., pp. 74–89, 2012.
[4]
S. Counce, P. Smith, R. Barth, and G. D. Snell, “Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin,” Annals of Surgery, vol. 144, no. 2, pp. 198–204, 1956.
[5]
G. D. Snell, “Methods for study of histocompatibility genes and isoantigens,” Methods in Medical Research, vol. 10, pp. 1–7, 1964.
[6]
E. Goulmy, “Minor histocompatibility antigens: from transplantation problems to therapy of cancer,” Human Immunology, vol. 67, no. 6, pp. 433–438, 2006.
[7]
E. Simpson, D. Roopenian, and E. Goulmy, “Much ado about minor histocompatibility antigens,” Immunology Today, vol. 19, no. 3, pp. 108–112, 1998.
[8]
E. Spierings and E. Goulmy, “Expanding the immunotherapeutic potential of minor histocompatibility antigens,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3397–3400, 2005.
[9]
E. Spierings, B. Wieles, and E. Goulmy, “Minor histocompatibility antigens—big in tumour therapy,” Trends in Immunology, vol. 25, no. 2, pp. 56–60, 2004.
[10]
B. Mommaas, The human minor histcompatibility antigen HA-1: its processing, presentation and recognition [Ph.D. thesis], Leiden University, 2006.
[11]
J. H. F. Falkenburg, L. van de Corput, E. W. A. Marijt, and R. Willemze, “Minor histocompatibility antigens in human stem cell transplantation,” Experimental Hematology, vol. 31, no. 9, pp. 743–751, 2003.
[12]
M. Markiewicz, Influence of donor selection and occurrence and impact of minor histocompatibility antigens' mismatches on results of hematopoietic cells transplantations from HLA-matched unrelated donors [Habilitation thesis], Medical University of Silesia, 2007, Habilitation thesis number 14/2007.
[13]
E. H. Warren, N. J. Vigneron, M. A. Gavin et al., “An antigen produced by splicing of noncontiguous peptides in the reverse order,” Science, vol. 313, no. 5792, pp. 1444–1447, 2006.
[14]
J. M. M. den Haan, L. M. Meadows, W. Wang et al., “The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism,” Science, vol. 279, no. 5353, pp. 1054–1057, 1998.
[15]
E. Goulmy, R. Schipper, J. Pool et al., “Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation,” The New England Journal of Medicine, vol. 334, no. 5, pp. 281–285, 1996.
[16]
L. H. Tseng, M. T. Lin, J. A. Hansen et al., “Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation,” Blood, vol. 94, no. 8, pp. 2911–2914, 1999.
[17]
D. Gallardo, J. I. Aróstegui, A. Balas et al., “Disparity for the minor histocompatibility antigen HA-1 is associated with an increased risk of acute graft-versus-host disease (GvHD) but it does not affect chronic GvHD incidence, disease-free survival or overall survival after allogeneic human leucocyte antigen-identical sibling donor transplantation,” British Journal of Haematology, vol. 114, no. 4, pp. 931–936, 2001.
[18]
B. Mommaas, J. Kamp, J. W. Drijfhout et al., “Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus,” Journal of Immunology, vol. 169, no. 6, pp. 3131–3136, 2002.
[19]
J. M. M. den Haan, N. E. Sherman, E. Blokland et al., “Identification of a graft versus host disease-associated human minor histocompatibility antigen,” Science, vol. 268, no. 5216, pp. 1476–1480, 1995.
[20]
E. Spierings, A. G. Brickner, J. A. Caldwell et al., “The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein,” Blood, vol. 102, no. 2, pp. 621–629, 2003.
[21]
A. G. Brickner, E. H. Warren, J. A. Caldwell et al., “The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing,” Journal of Experimental Medicine, vol. 193, no. 2, pp. 195–206, 2001.
[22]
Y. Akatsuka, E. H. Warren, T. A. Gooley et al., “Disparity for a newly identified minor histocompatibility antigen, HA-8, correlates with acute graft-versus-host disease after haematopoietic stem cell transplantation from an HLA-identical sibling,” British Journal of Haematology, vol. 123, no. 4, pp. 671–675, 2003.
[23]
A. Pérez-García, R. de la Cámara, A. Torres, M. González, A. Jiménez, and D. Gallardo, “Minor histocompatibility antigen HA-8 mismatch and clinical outcome after hla-identical sibling donor allogeneic stem cell transplantation,” Haematologica, vol. 90, no. 12, pp. 1723–1724, 2005.
[24]
H. Dolstra, H. Fredrix, F. Maas et al., “A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia,” Journal of Experimental Medicine, vol. 189, no. 2, pp. 301–308, 1999.
[25]
Y. Akatsuka, T. Nishida, E. Kondo et al., “Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens,” Journal of Experimental Medicine, vol. 197, no. 11, pp. 1489–1500, 2003.
[26]
T. Nishida, Y. Akatsuka, Y. Morishima et al., “Clinical relevance of a newly identified HLA-A24-restricted minor histocompatibility antigen epitope derived from BCL2A1, ACC-1, in patients receiving HLA genotypically matched unrelated bone marrow transplant,” British Journal of Haematology, vol. 124, no. 5, pp. 629–635, 2004.
[27]
A. G. Brickner, A. M. Evans, J. K. Mito et al., “The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL,” Blood, vol. 107, no. 9, pp. 3779–3786, 2006.
[28]
M. Murata, E. H. Warren, and S. R. Riddell, “A human minor histocompatibility antigen resulting from differential expression due to a gene deletion,” Journal of Experimental Medicine, vol. 197, no. 10, pp. 1279–1289, 2003.
[29]
S. Terakura, M. Murata, E. H. Warren et al., “A single minor histocompatibility antigen encoded by UGT2B17 and presented by human leukocyte antigen-A*2902 and -B*4403,” Transplantation, vol. 83, no. 9, pp. 1242–1248, 2007.
[30]
R. A. Pierce, E. D. Field, J. M. M. den Haan et al., “Cutting edge: the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique,” Journal of Immunology, vol. 163, no. 12, pp. 6360–6364, 1999.
[31]
L. Meadows, W. Wang, J. M. M. den Haan et al., “The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition,” Immunity, vol. 6, no. 3, pp. 273–281, 1997.
[32]
H. Torikai, Y. Akatsuka, M. Miyazaki et al., “A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene,” Journal of Immunology, vol. 173, no. 11, pp. 7046–7054, 2004.
[33]
W. Wang, L. R. Meadows, J. M. M. den Haan et al., “Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein,” Science, vol. 269, no. 5230, pp. 1588–1590, 1995.
[34]
E. H. Warren, M. A. Gavin, E. Simpson et al., “The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen,” Journal of Immunology, vol. 164, no. 5, pp. 2807–2814, 2000.
[35]
R. Ivanov, T. Aarts, S. Hol et al., “Identification of a 40S ribosomal protein S4-derived H-Y epitope able to elicit a lymphoblast-specific cytotoxic T lymphocyte response,” Clinical Cancer Research, vol. 11, no. 5, pp. 1694–1703, 2005.
[36]
M. H. J. Vogt, E. Goulmy, F. M. Kloosterboer et al., “UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition,” Blood, vol. 96, no. 9, pp. 3126–3132, 2000.
[37]
E. Zorn, D. B. Miklos, B. H. Floyd et al., “Minor histocompatibility antigen DBY elicits a coordinated B and T cell response after allogeneic stem cell transplantation,” Journal of Experimental Medicine, vol. 199, no. 8, pp. 1133–1142, 2004.
[38]
E. Spierings, C. J. Vermeulen, M. H. Vogt et al., “Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation,” The Lancet, vol. 362, no. 9384, pp. 610–615, 2003.
[39]
M. H. J. Vogt, J. W. van den Muijsenberg, E. Goulmy et al., “The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease,” Blood, vol. 99, no. 8, pp. 3027–3032, 2002.
[40]
http://www.lumc.nl/dbminor.
[41]
C. A. Klein, M. Wilke, J. Pool et al., “The hematopoietic system-specific minor histocompatibility antigen HA-1 shows aberrant expression in epithelial cancer cells,” Journal of Experimental Medicine, vol. 196, no. 3, pp. 359–368, 2002.
[42]
N. Fujii, A. Hiraki, K. Ikeda et al., “Expression of minor histocompatibility antigen, HA-1, in solid tumor cells,” Transplantation, vol. 73, no. 7, pp. 1137–1141, 2002.
[43]
E. Spierings, J. Drabbels, M. Hendriks et al., “A uniform genomic minor histocompatibility antigen typing methodology and database designed to facilitate clinical applications,” PLoS ONE, vol. 1, no. 1, article e42, 2006.
[44]
E. Simpson, D. Scott, E. James et al., “Minor H antigens: genes and peptides,” European Journal of Immunogenetics, vol. 28, no. 5, pp. 505–513, 2001.
[45]
R. Laylor, L. Cannella, E. Simpson, and F. Dazzi, “Minor histocompatibility antigens and stem cell transplantation,” Vox Sanguinis, vol. 87, supplement 2, pp. S11–S14, 2004.
[46]
R. Spaapen and T. Mutis, “Targeting haematopoietic-specific minor histocompatibility antigens to distinguish graft-versus-tumour effects from graft-versus-host disease,” Best Practice and Research, vol. 21, no. 3, pp. 543–557, 2008.
[47]
M. Stern, R. Brand, T. de Witte et al., “Female-versus-male alloreactivity as a model for minor histocompatibility antigens in hematopoietic stem cell transplantation,” American Journal of Transplantation, vol. 8, no. 10, pp. 2149–2157, 2008.
[48]
M. Markiewicz, U. Siekiera, M. Dzierzak-Mietla, P. Zielinska, and S. Kyrcz-Krzemien, “The impact of H-Y mismatches on results of HLA-matched unrelated allogeneic hematopoietic stem cell transplantation,” Transplantation Proceedings, vol. 42, no. 8, pp. 3297–3300, 2010.
[49]
M. T. Lin, T. Gooley, J. A. Hansen et al., “Absence of statistically significant correlation between disparity for the minor histocompatibility antigen HA-1 and outcome after allogeneic hematopoietic cell transplantation,” Blood, vol. 98, no. 10, pp. 3172–3173, 2001.
[50]
J. H. F. Falkenburg, H. M. Goselink, D. van der Harst et al., “Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T lymphocytes,” Journal of Experimental Medicine, vol. 174, no. 1, pp. 27–33, 1991.
[51]
T. Katagiri, S. Shiobara, S. Nakao et al., “Mismatch of minor histocompatibility antigen contributes to a graft-versus-leukemia effect rather than to acute GVHD, resulting in long-term survival after HLA-identical stem cell transplantation in Japan,” Bone Marrow Transplantation, vol. 38, no. 10, pp. 681–686, 2006.
[52]
J. H. F. Falkenburg and R. Willemze, “Minor histocompatibility antigens as targets of cellular immunotherapy in leukaemia,” Best Practice and Research, vol. 17, no. 3, pp. 415–425, 2004.
[53]
I. Jedema and J. H. F. Falkenburg, “Immunotherapy post-transplant,” in Haematopoietic Stem Cell Transplantation, ESH-EBMT Handbook, J. Apperley, E. Carreras, E. Gluckman, and T. Masszi, Eds., pp. 288–301, 6th edition, 2012.
[54]
A. Dickinson, “Biomarkers in acute and chronic GVHD,” in Graft -Versus-Host Disease, H. T. Greinix, Ed., pp. 17–31, Unimed Verlag AG, 2008.
[55]
J. Apperley, J. E, and T. Masszi, “Graft-versus-host disease,” in Haematopoietic Stem Cell Transplantation, ESH-EBMT Handbook, J. Apperley, E. Carreras, E. Gluckman, and T. Masszi, Eds., pp. 216–233, 6th edition, 2012.
[56]
R. M. Szydlo, “The Statistical evaluation of HSCT data,” in Haematopoietic Stem Cell Transplantation, ESH-EBMT Handbook, J. Apperley, E. Carreras, E. Gluckman, and T. Masszi, Eds., pp. 612–628, 6th edition, 2012.
[57]
E. Spierings, M. Hendriks, L. Absi et al., “Phenotype frequencies of autosomal minor histocompatibility antigens display significant differences among populations,” PLoS Genetics, vol. 3, no. 6, article e103, 2007.
[58]
U. Siekiera and J. Janusz, “Human minor histocompatibility antigens (mHag) in HLA-ABC, DR, DQ matched sib-pairs,” Transfusion Clinique et Biologique, vol. 8, supplement 1, pp. 163s–164s, 2001.
[59]
H. Y. Lio, J. L. Tang, J. Wu, S. J. Wu, C. Y. Lin, and Y. C. Yang, “Minor histocompatibility antigen HA-1 and HA-2 polymorphisms in Taiwan: frequency and application in hematopoietic stem cell transplantation,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 9, pp. 1287–1293, 2010.
[60]
H. Jung, C. S. Ki, J. W. Kim, and E. S. Kang, “Frequencies of 10 autosomal minor histocompatibility antigens in Korean population and estimated disparities in unrelated hematopoietic stem cell transplantation,” Tissue Antigens, vol. 79, no. 1, pp. 42–49, 2012.
[61]
S. S. B. Randolph, T. A. Gooley, E. H. Warren, F. R. Appelbaum, and S. R. Riddell, “Female donors contribute to a selective graft-versus-leukemia effect in male recipients of HLA-matched, related hematopoietic stem cell transplants,” Blood, vol. 103, no. 1, pp. 347–352, 2004.
[62]
T. Mutis, G. Gillespie, E. Schrama, J. H. F. Falkenburg, P. Moss, and E. Goulmy, “Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease,” Nature Medicine, vol. 5, no. 7, pp. 839–842, 1999.
[63]
M. Markiewicz, U. Siekiera, A. Karolczyk et al., “Immunogenic disparities of 11 minor histocompatibility antigens (mHAs) in HLA-matched unrelated allogeneic hematopoietic SCT,” Bone Marrow Transplantation, vol. 43, no. 4, pp. 293–300, 2009.
[64]
M. H. Sellami, L. Torjemane, A. E. de Arias et al., “Does minor histocompatibility antigen HA-1 disparity affect the occurrence of graft-versus-host disease in tunisian recipients of hematopoietic stem cells?” Clinics, vol. 65, no. 11, pp. 1099–1103, 2010.
[65]
G. Socié, P. Loiseau, R. Tamouza et al., “Both genetic and clinical factors predict the development of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation,” Transplantation, vol. 72, no. 4, pp. 699–706, 2001.
[66]
B. D. Tait, R. Maddison, J. McCluskey et al., “Clinical relevance of the minor histocompatibility antigen HA-1 in allogeneic bone marrow transplantation between HLA identical siblings,” Transplantation Proceedings, vol. 33, no. 1-2, pp. 1760–1761, 2001.