In recent years, umbilical cord blood (CB), a rich source of hematopoietic stem cells (HSC), has been used successfully as an alternative HSC source to treat a variety of hematologic, immunologic, genetic, and oncologic disorders. CB has several advantages, including prompt availability of the transplant, decrease of graft versus host disease (GVHD) and better long-term immune recovery, resulting in a similar long-term survival. Studies have shown that some degree of HLA mismatches is acceptable. This review is intended to outline the main aspects of HLA matching in different settings (related, pediatric, adult, or double-unit HSCT), its effect on transplantation outcome and the role of HLA in donor selection. 1. Introduction The experience of the last 20 years indicates that cord blood transplantation is a valid alternative to bone marrow (BM) and PBSC transplants. For patients suffering from malignant or nonmalignant diseases, who do not have a matched sibling donor or a matched volunteer unrelated donor, two available alternative stem cell donor sources exist: a haploidentical transplantation from a three locus mismatched family member (parents, siblings) or an unrelated cryopreserved umbilical cord blood (CB) unit from a cord blood bank [1–4]. A low rate of graft versus host disease (GVHD) in the presence of higher HLA disparity, represents the main advantage of the umbilical cord grafts, while delayed engraftment due to limited cell dose is still the major drawback [3]. Moreover, umbilical cord blood is a viable source particularly for racial and ethnic minority patients whose genetic variations are not included in unrelated volunteer donor registries [5]. The role of HLA mismatches in CBT remains unclear as most transplants have been selected on low resolution class I HLA typing and allelic level class II typing. In malignant diseases, HLA mismatching is partially overcome by increasing the cell dose [6]. Recent data on associations between HLA disparity and survival, support that there is a direct association between the number of donor-recipient HLA mismatches and the risk for GVHD, while the mismatching has a greater impact on absolute mortality differences in recipients with diseases with low risk of posttransplant recurrence [7]. The number of CB transplantations, as well as the global inventory of CB units, are growing rapidly. CB grafts, in contrast to adults unrelated donors who need 10/10 allele level matches with the patients, have a reduced risk of severe GVHD and permit a mismatched transplantation at least in one HLA locus [8, 9]. HLA
References
[1]
E. D. Thomas, C. D. Buckner, M. Banaji, et al., “One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogenic marrow transplantation,” Blood, vol. 49, no. 4, pp. 511–533, 1977.
[2]
K. G. Blume, E. Beutler, K. J. Bross, et al., “Bone-marrow ablation and allogeneic marrow transplantation in acute leukemia,” The New England Journal of Medicine, vol. 302, pp. 1041–1046, 1980.
[3]
J. E. Wagner and E. Gluckman, “Umbilical cord blood transplantation: the first 20 years,” Seminars in Hematology, vol. 47, no. 1, pp. 3–12, 2010.
[4]
J. Barrett, E. Gluckman, R. Handgretinger, and A. Madrigal, “Point-counterpoint: haploidentical family donors versus cord blood transplantation,” Biology of Blood and Marrow Transplantation, vol. 17, supplement 1, pp. S89–S93, 2011.
[5]
K. K. Ballen, J. Hicks, B. Dharan et al., “Racial and ethnic composition of volunteer cord blood donors: comparison with volunteer unrelated marrow donors,” Transfusion, vol. 42, no. 10, pp. 1279–1284, 2002.
[6]
R. Handgretinger, T. Klingebiel, P. Lang et al., “Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children,” Bone Marrow Transplantation, vol. 27, no. 8, pp. 777–783, 2001.
[7]
S. J. Lee, J. Klein, M. Haagenson et al., “High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation,” Blood, vol. 110, no. 13, pp. 4576–4583, 2007.
[8]
N. Kamani, S. Spellman, C. K. Hurley et al., “State of the art review: HLA matching and outcome of unrelated donor umbilical cord blood transplants,” Biology of Blood and Marrow Transplantation, vol. 14, no. 1, pp. 1–6, 2008.
[9]
E. Gluckman and V. Rocha, “Cord blood transplantation:state of the art,” Haematologica, vol. 94, no. 4, pp. 451–454, 2009.
[10]
J. A. Gutman, S. R. Riddell, S. McGoldrick, and C. Delaney, “Double unit cord blood transplantation: who wins-and why do we care?” Chimerism, vol. 1, no. 1, pp. 21–22, 2010.
[11]
J. Klein and A. Sato, “Advances in immunology: the HLA system,” The New England Journal of Medicine, vol. 343, no. 11, pp. 782–786, 2000.
[12]
J. Trowsdale, “HLA genomics in the third millennium,” Current Opinion in Immunology, vol. 17, no. 5, pp. 498–504, 2005.
[13]
R. I. Lechler, G. Lombardi, J. R. Batchelor, N. Reinsmoen, and F. H. Bach, “The molecular basis of alloreactivity,” Immunology Today, vol. 11, no. 3, pp. 83–88, 1990.
[14]
C. K. Hurley, M. Fernandez-Vina, W. H. Hildebrand et al., “A high degree of HLA disparity arises from limited allelic diversity: analysis of 1775 unrelated bone marrow transplant donor-recipient Pairs,” Human Immunology, vol. 68, no. 1, pp. 30–40, 2007.
[15]
S. G. Marsh, “Nomenclature for factors of the HLA system,” International Journal of Immunogenetics, vol. 39, no. 4, pp. 370–372, 2012.
[16]
J. M. Tiercy, J. Villard, and E. Roosnek, “Selection of unrelated bone marrow donors by serology, molecular typing and cellular assays,” Transplant Immunology, vol. 10, no. 2-3, pp. 215–221, 2002.
[17]
A. M. Little, S. G. E. Marsh, and J. A. Madrigal, “Current methodologies of human leukocyte antigen typing utilized for bone marrow donor selection,” Current Opinion in Hematology, vol. 5, no. 6, pp. 419–428, 1998.
[18]
P. P. J. Dunn, “Human leucocyte antigen typing: techniques and technology, a critical appraisal,” International Journal of Immunogenetics, vol. 38, no. 6, pp. 463–473, 2011.
[19]
K. K. Ballen, “New trends in umbilical cord blood transplantation,” Blood, vol. 105, no. 10, pp. 3786–3792, 2005.
[20]
J. E. Wagner, N. A. Kernan, M. Steinbuch, H. E. Broxmeyer, and E. Gluckman, “Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease,” The Lancet, vol. 346, no. 8969, pp. 214–219, 1995.
[21]
J. Kurtzberg, M. Laughlin, M. L. Graham et al., “Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients,” The New England Journal of Medicine, vol. 335, no. 3, pp. 157–166, 1996.
[22]
V. Rocha, G. Sanz, and E. Gluckman, “Umbilical cord blood transplantation,” Current Opinion in Hematology, vol. 11, no. 6, pp. 375–385, 2004.
[23]
V. Rocha, J. E. Wagner, K. A. Sobocinski et al., “Graft-versus-host disease in children who have received a cord blood or bone marrow transplant from an HLA-identical sibling,” The New England Journal of Medicine, vol. 342, no. 25, pp. 1846–1854, 2000.
[24]
Y. Cohen and A. Nagler, “Umbilical cord blood transplantation—how, when and for whom?” Blood Reviews, vol. 18, no. 3, pp. 167–179, 2004.
[25]
F. Locatelli, V. Rocha, W. Reed et al., “Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease,” Blood, vol. 101, no. 6, pp. 2137–2143, 2003.
[26]
W. Reed, R. Smith, F. Dekovic et al., “Comprehensive banking of sibling donor cord blood for children with malignant and nonmalignant disease,” Blood, vol. 101, no. 1, pp. 351–357, 2003.
[27]
C. Stavropoulos-Giokas and A. C. Papassavas, “Cord blood banking and transplantation: a promising reality,” HAEMA, vol. 9, no. 6, pp. 736–756, 2006.
[28]
S. S. Grewal, J. P. Kahn, M. L. MacMillan, N. K. C. Ramsay, and J. E. Wagner, “Successful hematopoietic stem cell transplantation for Fanconi anemia from an unaffected HLA-genotype-identical sibling selected using preimplantation genetic diagnosis,” Blood, vol. 103, no. 3, pp. 1147–1151, 2004.
[29]
C. Basille, R. Frydman, A. E. Aly et al., “Preimplantation genetic diagnosis: state of the art,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 145, no. 1, pp. 9–13, 2009.
[30]
E. Goussetis, E. Petrakou, M. Theodosaki et al., “Directed sibling donor cord blood banking for children with β-thalassemia major in Greece: usage rate and outcome of transplantation for HLA-matched units,” Blood Cells, Molecules, and Diseases, vol. 44, no. 2, pp. 107–110, 2010.
[31]
J. Kurtzberg, V. K. Prasad, S. L. Carter et al., “Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies,” Blood, vol. 112, no. 10, pp. 4318–4327, 2008.
[32]
N. R. Kamani, M. C. Walters, S. Carter, et al., “Unrelated donor cord blood transplantation for children with severe sickle cell disease: results of one cohort from the phase II study from the blood and marrow transplant clinical trials network (BMT CTN),” Biology of Blood and Marrow Transplantation, vol. 18, no. 8, pp. 1265–1272, 2012.
[33]
W. Reed, M. Walters, and B. H. Lubin, “Collection of sibling donor cord blood for children with thalassemia,” Journal of Pediatric Hematology/Oncology, vol. 22, no. 6, pp. 602–604, 2000.
[34]
T. H. Jaing, I. J. Hung, C. P. Yang, S. H. Chen, C. F. Sun, and R. Chow, “Rapid and complete donor chimerism after unrelated mismatched cord blood transplantation in 5 children with β-thalassemia major,” Biology of Blood and Marrow Transplantation, vol. 11, no. 5, pp. 349–353, 2005.
[35]
P. Rubinstein, C. Carrier, A. Scaradavou et al., “Outcomes among 562 recipients of placental-blood transplants from unrelated donors,” The New England Journal of Medicine, vol. 339, no. 22, pp. 1565–1577, 1998.
[36]
A. Yoshimi, S. Kojima, S. Taniguchi et al., “Unrelated cord blood transplantation for severe aplastic anemia,” Biology of Blood and Marrow Transplantation, vol. 14, no. 9, pp. 1057–1063, 2008.
[37]
K. W. Chan, L. McDonald, D. Lim, M. S. Grimley, G. Grayson, and D. A. Wall, “Unrelated cord blood transplantation in children with idiopathic severe aplastic anemia,” Bone Marrow Transplantation, vol. 42, no. 9, pp. 589–595, 2008.
[38]
R. Childs, “Combined CB and Haploidentical CD34+ cell transplantation improves transplant outcome for patients with treatment-refractory severe aplastic anemia,” in Proceedings of the 10th International Cord Blood Symposium, San Francisco, Calif, USA, 2012.
[39]
J. F. Fernandes, V. Rocha, M. Labopin, et al., “Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood?” Blood, vol. 119, pp. 2949–2955, 2012.
[40]
S. L. Staba, M. L. Escolar, M. Poe et al., “Cord-blood transplants from unrelated donors in patients with hurler's syndrome,” The New England Journal of Medicine, vol. 350, no. 19, pp. 1960–1969, 2004.
[41]
J. Sun, J. Allison, C. McLaughlin et al., “Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders,” Transfusion, vol. 50, no. 9, pp. 1980–1987, 2010.
[42]
M. Eapen, V. Rocha, G. Sanz et al., “Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis,” The Lancet Oncology, vol. 11, no. 7, pp. 653–660, 2010.
[43]
M. J. Laughlin, J. Barker, B. Bambach et al., “Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors,” The New England Journal of Medicine, vol. 344, no. 24, pp. 1815–1822, 2001.
[44]
G. D. Long, M. Laughlin, B. Madan et al., “Unrelated umbilical cord blood transplantation in adult patients,” Biology of Blood and Marrow Transplantation, vol. 9, no. 12, pp. 772–780, 2003.
[45]
G. F. Sanz, S. Saavedra, D. Flanelles et al., “Standardized, unrelated donor cord blood transplantation in adults with hematologic malignancies,” Blood, vol. 98, no. 8, pp. 2332–2338, 2001.
[46]
M. de Lima, M. Fernandez-Vina, and E. J. Shpall, “HLA matching of CB: it's complicated,” Blood, vol. 118, no. 14, pp. 3761–3762, 2011.
[47]
C. E. Stevens, C. Carrier, C. Carpenter, D. Sung, and A. Scaradavou, “HLA mismatch direction in cord blood transplantation: impact on outcome and implications for cord blood unit selection,” Blood, vol. 118, no. 14, pp. 3969–3978, 2011.
[48]
A. Nagler, C. Brautbar, S. Slavin, and A. Bishara, “Bone marrow transplantation using unrelated and family related donors: the impact of HLA-C disparity,” Bone Marrow Transplantation, vol. 18, no. 5, pp. 891–897, 1996.
[49]
M. Eapen, J. P. Klein, G. F. Sanz, et al., “Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis,” The Lancet Oncology, vol. 12, no. 13, pp. 1214–1221, 2011.
[50]
N. Flomenberg, L. A. Baxter-Lowe, D. Confer et al., “Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome,” Blood, vol. 104, no. 7, pp. 1923–1930, 2004.
[51]
E. W. Petersdorf, C. Anasetti, P. J. Martin et al., “Limits of HLA mismatching in unrelated hematopoietic cell transplantation,” Blood, vol. 104, no. 9, pp. 2976–2980, 2004.
[52]
R. A. Bray, C. K. Hurley, N. R. Kamani et al., “National marrow donor program HLA matching guidelines for unrelated adult donor hematopoietic cell transplants,” Biology of Blood and Marrow Transplantation, vol. 14, supplement 9, pp. 45–53, 2008.
[53]
S. R. Spellman, M. Eapen, B. R. Logan et al., “A perspective on the selection of unrelated donors and cord blood units for transplantation,” Blood, vol. 120, no. 2, pp. 259–265, 2012.
[54]
J. J. Van Rood, C. E. Stevens, J. Smits, C. Carrier, C. Carpenter, and A. Scaradavou, “Reexposure of cord blood to noninherited maternal HLA antigens improves transplant outcome in hematological malignancies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 19952–19957, 2009.
[55]
V. Rocha, D. Purtill, M. Zhang, et al., “Impact of matching at non-inherited maternal antigenson outcomes after 5/6 or 4/6 HLA mismatched unrelated cord blood transplantation for malignant haematological disease. A matched pair analysis on behalf of Eurocord, Netcord, NMDP, CIBMTR,” Bone Marrow Transplantation, vol. 46, supplement 1, p. S2, 2011, Abstract O115.
[56]
J. Kanda, T. Ichinohe, K. Matsuo et al., “Impact of ABO mismatching on the outcomes of allogeneic related and unrelated blood and marrow stem cell transplantations for hematologic malignancies: IPD-based meta-analysis of cohort studies,” Transfusion, vol. 49, no. 4, pp. 624–635, 2009.
[57]
N. Blin, R. Traineau, S. Houssin et al., “Impact of donor-recipient major ABO mismatch on allogeneic transplantation outcome according to stem cell source,” Biology of Blood and Marrow Transplantation, vol. 16, no. 9, pp. 1315–1323, 2010.
[58]
S. Spellman, R. Bray, S. Rosen-Bronson et al., “The detection of donor-directed, HLA-specific alloantibodies in recipients of unrelated hematopoietic cell transplantation is predictive of graft failure,” Blood, vol. 115, no. 13, pp. 2704–2708, 2010.
[59]
M. Takanashi, Y. Atsuta, K. Fujiwara et al., “The impact of anti-HLA antibodies on unrelated cord blood transplantations,” Blood, vol. 116, no. 15, pp. 2839–2846, 2010.
[60]
C. Cutler, H. T. Kim, L. Sun et al., “Donor-specific anti-HLA antibodies predict outcome in double umbilical cord blood transplantation,” Blood, vol. 118, no. 25, pp. 6691–6697, 2011.
[61]
M. A. Fernandez-Vina, M. de Lima, and S. O. Ciurea, “Humoral HLA sensitization matters in CBT outcome,” Blood, vol. 118, no. 25, pp. 6482–6484, 2011.
[62]
C. G. Brunstein, J. A. Gutman, D. J. Weisdorf et al., “Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood,” Blood, vol. 116, no. 22, pp. 4693–4699, 2010.
[63]
S. Avery, W. Shi, M. Lubin et al., “Influence of infused cell dose and HLA match on engraftment after double-unit cord blood allografts,” Blood, vol. 117, no. 12, pp. 3277–3285, 2011.
[64]
A. Scaradavou, K. M. Smith, R. Hawke et al., “Cord blood units with low CD34+ cell viability have a low probability of engraftment after double unit transplantation,” Biology of Blood and Marrow Transplantation, vol. 16, no. 4, pp. 500–508, 2010.
[65]
S. Querol, S. G. Gomez, A. Pagliuca, M. Torrabadella, and J. A. Madrigal, “Quality rather than quantity: the cord blood bank dilemma,” Bone Marrow Transplantation, vol. 45, no. 6, pp. 970–978, 2010.
[66]
M. Delaney, C. S. Cutler, R. L. Haspel et al., “High-resolution HLA matching in double-umbilical-cord-blood reduced-intensity transplantation in adults,” Transfusion, vol. 49, no. 5, pp. 995–1002, 2009.
[67]
J. N. Barker, A. Scaradavou, and C. E. Stevens, “Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies,” Blood, vol. 115, no. 9, pp. 1843–1849, 2010.
[68]
C. G. Brunstein, E. J. Fuchs, S. L. Carter et al., “Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts,” Blood, vol. 118, no. 2, pp. 282–288, 2011.
[69]
E. Gluckman, A. Ruggeri, F. Volt, R. Cunha, K. Boudjedir, and V. Rocha, “Milestones in umbilical cord blood transplantation,” British Journal of Haematology, vol. 154, no. 4, pp. 441–447, 2011.
[70]
E. Gluckman, Choice of Donor According to HLA Typing and Stem Cell Source, Heamatopoietic Stem Cell Transplantation, chapter 6, The EBMT Handbook, 6th edition, 2012.
[71]
C. Mueller and S. Querol, Bone Marrow Donor Registries and Cord Blood Banks, Heamatopoietic Stem Cell Transplantation, chapter 6, The EBMT Handbook, 6th edition, 2012.
[72]
NetCord and the Foundation for the Accreditation of Cellular Therapy (FACT), Ed., NetCord-FACT International Standards For Cord Blood Collection, Processing, and Release For Administration, 4th edition.
[73]
C. Anasetti, F. Aversa, and C. G. Brunstein, “Back to the future: mismatched unrelated donor, haploidentical related donor, or unrelated umbilical cord blood transplantation?” Biology of Blood and Marrow Transplantation, vol. 18, supplement 1, pp. S161–S165, 2012.
[74]
J. Kuball, “Towards the next generation of transplantation: HIV positive patients,” in Proceedings of the 10th International Cord Blood Symposium, San Francisco, Calif, USA, 2012.
[75]
L. D. Petz, “Cord Blood Transplants with Homozygous CCR5-Delta 32 Units as a means of providing possible cure of HIV infection,” in Proceedings of the 10th International Cord Blood Symposium, San Francisco, Calif, USA, 2012.
[76]
K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004.
[77]
V. Tisato, K. Naresh, J. Girdlestone, C. Navarrete, and F. Dazzi, “Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease,” Leukemia, vol. 21, no. 9, pp. 1992–1999, 2007.
[78]
A. Giorgetti, N. Montserrat, T. Aasen et al., “Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2,” Cell Stem Cell, vol. 5, no. 4, pp. 353–357, 2009.