We used flow cytometry to analyze the cell cycle, DNA damage, and apoptosis in hematopoietic subsets in MDS marrow. Subsets were assigned using CD45, side scatter, CD34, and CD71. Cell cycle fractions were analyzed using DRAQ 5 (DNA content) and MPM-2 (mitoses). DNA damage was assessed using p-H2A.X, and apoptosis using Annexin V. Compared to controls, MDS patients demonstrated no increased mitoses in erythroid, myeloid, or CD34+ cells. Myeloid progenitors demonstrated increased G2 cells, which with no increased mitoses suggested delayed passage through G2. Myeloid progenitors demonstrated increased p-H2A.X, consistent with DNA damage causing this delay. Annexin V reactivity was equivalent in MDS and controls. Results for each parameter varied among hematopoietic compartments, demonstrating the need to analyze compartments separately. Our results suggest that peripheral cytopenias in MDS are due to delayed cell cycle passage of marrow progenitors and that this delayed passage and leukemic progression derive from excessive DNA damage. 1. Introduction Myelodysplastic syndrome (MDS) is characterized by life-threatening peripheral blood cytopenias and a propensity to progress to acute myeloid leukemia (AML). Pathogenetic explanations for both characteristics remain elusive. MDS is a serious health problem, especially in the expanding elderly population, where incidence approaches 80 cases per 100,000 population per year [1–5]. There is no effective curative strategy for MDS in elderly patients, and in younger patients curative treatment consists of allogeneic stem cell transplantation, which is expensive with associated morbidity and mortality [6–8]. A current pathogenetic model of MDS is hyperproliferation of marrow progenitors but poor production of circulating cells due to excessive in vivo apoptosis; however, this model is not supported by the absence of hyperuricemia as a defining characteristic of the disease and fails to explain the propensity of MDS to progress to AML. An alternative model is that MDS is inherently a mutator phenotype characterized by increased DNA damage, that causing impaired cell cycling, failure of production of peripheral blood cells, and leukemic transformation. Improved treatment strategies for MDS require clarification of its pathogenesis. To investigate these issues we used multiparametric flow cytometry to analyze the cell cycle, including mitotic events, DNA damage, and apoptosis in individual hematopoietic precursor compartments in marrow samples from patients with MDS. 2. Methods 2.1. Patients MDS patients receiving no
References
[1]
C. Aul, N. Gattermann, and W. Schneider, “Age-related incidence and other epidemiological aspects of myelodysplastic syndromes,” British Journal of Haematology, vol. 82, no. 2, pp. 358–367, 1992.
[2]
M. T. Smith, M. S. Linet, and G. J. Morgan, “Causative agents in the etiology of the myelodysplastic syndromes and the acute myeloid leukemias,” in The Myelodysplastic Syndromes, Pathobiology and Clinical Management, John M. Bennett, Ed., pp. 29–63, Marcel Dekker, New York, NY, USA, 2002.
[3]
C. Schoch, S. Schnittger, W. Kern, M. Dugas, W. Hiddemann, and T. Haferlach, “Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia,” Haematologica, vol. 88, no. 3, pp. 351–353, 2003.
[4]
A. Radlund, T. Thiede, S. Hansen, M. Carlsson, and L. Engquist, “Incidence of myelodysplastic syndromes in a Swedish population,” European Journal of Haematology, vol. 54, no. 3, pp. 153–156, 1995.
[5]
R. A. Cartwright, R. J. Q. McNally, D. J. Rowland, and J. Thomas, The Descriptive Epidemiology of Leukaemia and Related Conditions in Parts of the United Kingdom 1984–1993, Leukaemia Research Fund, London, UK, 1997.
[6]
H. Hasle, G. Kerndrup, and B. B. Jacobsen, “Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions,” Leukemia, vol. 9, no. 9, pp. 1569–1572, 1995.
[7]
H. Hasle, L. D. Wadsworth, B. G. Massing, M. McBride, and K. R. Schultz, “A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada,” British Journal of Haematology, vol. 106, no. 4, pp. 1027–1032, 1999.
[8]
S. J. Passmore, J. M. Chessells, H. Kempski, I. M. Hann, P. A. Brownbill, and C. A. Stiller, “Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival,” British Journal of Haematology, vol. 121, no. 5, pp. 758–767, 2003.
[9]
R. D. Brunning, J. M. Bennett, G. Flandrin, et al., “Myelodysplastic syndromes,” in World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, E. J. H. N. Jaffe, H. Stein, and J. W. Vardiman, Eds., pp. 61–73, IARC Press, Lyon, France, 2001.
[10]
H. Hasle, C. M. Niemeyer, J. M. Chessells et al., “A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases,” Leukemia, vol. 17, no. 2, pp. 277–282, 2003.
[11]
P. Greenberg, C. Cox, M. M. LeBeau et al., “International scoring system for evaluating prognosis in myelodysplastic syndromes,” Blood, vol. 89, no. 6, pp. 2079–2088, 1997.
[12]
G. Landberg and G. Roos, “Flow cytometric analysis of proliferation associated nuclear antigens using washless staining of unfixed cells,” Cytometry, vol. 13, no. 3, pp. 230–240, 1992.
[13]
T. D. Friedrich, E. Okubo, J. Laffin, and J. M. Lehman, “Okadaic acid induces appearance of the mitotic epitope MPM-2 in SV40-infected CV-1 cells with a >G2-phase DNA content,” Cytometry, vol. 31, no. 4, pp. 260–264, 1998.
[14]
E. Endl and J. Gerdes, “Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis,” Journal of Cellular Physiology, vol. 182, no. 3, pp. 371–380, 2000.
[15]
G. T. Stelzer, K. E. Shults, and M. R. Loken, “CD45 gating for routine flow cytometric analysis of human bone marrow specimens,” Annals of the New York Academy of Sciences, vol. 677, pp. 265–280, 1993.
[16]
P. J. Smith, N. Blunt, M. Wiltshire et al., “Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy,” Cytometry, vol. 40, no. 4, pp. 280–291, 2000.
[17]
P. J. Smith, M. Wiltshire, S. Davies, L. H. Patterson, and T. Hoy, “A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry,” Journal of Immunological Methods, vol. 229, no. 1-2, pp. 131–139, 1999.
[18]
M. Wiltshire, L. H. Patterson, and P. J. Smith, “A novel deep red/low infrared fluorescent flow cytometric probe, DRAQ5NO, for the discrimination of intact nucleated cells in apoptotic cell populations,” Cytometry, vol. 39, no. 3, pp. 217–223, 2000.
[19]
J. W. Jacobberger, R. M. Sramkoski, P. S. Frisa et al., “Immunoreactivity of Stat5 phosphorylated on tyrosine as a cell-based measure of Bcr/Abl kinase activity,” Cytometry—Part A, vol. 54, no. 2, pp. 75–88, 2003.
[20]
X. Huang, H. D. Halicka, F. Traganos, T. Tanaka, A. Kurose, and Z. Darzynkiewicz, “Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis,” Cell Proliferation, vol. 38, no. 4, pp. 223–243, 2005.
[21]
X. Huang, M. Okafuji, F. Traganos, E. Luther, E. Holden, and Z. Darzynkiewicz, “Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin,” Cytometry—Part A, vol. 58, no. 2, pp. 99–110, 2004.
[22]
J. E. Parker and G. J. Mufti, “The role of apoptosis in the pathogenesis of the myelodysplastic syndromes,” International Journal of Hematology, vol. 73, no. 4, pp. 416–428, 2001.
[23]
A. Riccardi, C. M. Montecucco, M. Danova et al., “Flow cytometric evaluation of proliferative activity and ploidy in myelodysplastic syndromes and acute leukemias,” Basic and Applied Histochemistry, vol. 30, no. 2, pp. 181–192, 1986.
[24]
S. W. Peters, R. E. Clark, T. G. Hoy, and A. Jacobs, “DNA content and cell cycle analysis of bone marrow cells in myelodysplastic syndromes (MDS),” British Journal of Haematology, vol. 62, no. 2, pp. 239–245, 1986.
[25]
I. M. Jensen, “Myelopoiesis in myelodysplasia evaluated by multiparameter flow cytometry,” Leukemia and Lymphoma, vol. 20, no. 1-2, pp. 17–25, 1995.
[26]
A. Raza, S. Mundle, A. Iftikhar et al., “Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis,” American Journal of Hematology, vol. 48, no. 3, pp. 143–154, 1995.
[27]
A. Raza, S. Alvi, L. Broady-Robinson et al., “Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo- and/or bromodeoxyuridine,” Experimental Hematology, vol. 25, no. 6, pp. 530–535, 1997.
[28]
V. Shetty, S. Mundle, S. Alvi et al., “Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes,” Leukemia Research, vol. 20, no. 11-12, pp. 891–900, 1996.
[29]
A. Raza, S. Mundle, V. Shetty et al., “Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines,” International Journal of Hematology, vol. 63, no. 4, pp. 265–278, 1996.
[30]
O. A. Sedelnikova, E. P. Rogakou, I. G. Panyutin, and W. M. Bonner, “Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody,” Radiation Research, vol. 158, no. 4, pp. 486–492, 2002.
[31]
E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” Journal of Biological Chemistry, vol. 273, no. 10, pp. 5858–5868, 1998.
[32]
S. Horibe, M. Takagi, J. Unno et al., “DNA damage check points prevent leukemic transformation in myelodysplastic syndrome,” Leukemia, vol. 21, no. 10, pp. 2195–2198, 2007.
[33]
D. B. Kerbauy and H. J. Deeg, “Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome,” Experimental Hematology, vol. 35, no. 11, pp. 1739–1746, 2007.