全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Leukocyte Antigen Profiles of Latin American Populations: Differential Admixture and Its Potential Impact on Hematopoietic Stem Cell Transplantation

DOI: 10.1155/2012/136087

Full-Text   Cite this paper   Add to My Lib

Abstract:

The outcome of hematopoietic stem cell transplantation (HSCT) is shaped by both clinical and genetic factors that determine its success. Genetic factors including human leukocyte antigen (HLA) and non-HLA genetic variants are believed to influence the risk of potentially fatal complications after the transplant. Moreover, ethnicity has been proposed as a factor modifying the risk of graft-versus-host disease. The populations of Latin America are a complex array of different admixture processes with varying degrees of ancestral population proportions that came in different migration waves. This complexity makes the study of genetic risks in this region complicated unless the extent of this variation is thoroughly characterized. In this study we compared the HLA-A and HLA-B allele group profiles for 31 Latin American populations and 61 ancestral populations from Iberia, Italy, Sub-Saharan Africa, and America. Results from population genetics comparisons show a wide variation in the HLA profiles from the Latin American populations that correlate with different admixture proportions. Populations in Latin America seem to be organized in at least three groups with (1) strong Amerindian admixture, (2) strong Caucasian component, and (3) a Caucasian-African gradient. These results imply that genetic risk assessment for HSCT in Latin America has to be adapted for different population subgroups rather than as a pan-Hispanic/Latino analysis. 1. Introduction Hematopoietic stem cell transplantation (HSCT) is a curative therapy used for the treatment of malignant and nonmalignant hematologic diseases, congenital immune deficiencies, solid tumors, and metabolic diseases [1]. Its outcome is shaped not only by clinical factors [2], but also by the genetics of the patient-donor pair [3]. Apart from the normal compatibility defined by the human leukocyte antigen (HLA) system [4, 5], variation in several genetic systems is thought to have an impact on the complications experienced by patients that undergo this procedure [6]. Graft-versus-host disease (GVHD) is a major complication affecting the success of the transplant and the survival of the patients. Despite the fact that most transplants are performed with high levels of compatibility in terms of HLA, a significant proportion of these transplants is affected by GVHD. Apart from clinical factors [7], a genetic component for GVHD other than HLA has been pointed out as responsible for the occurrence of GVHD in 10/10 HLA compatible patient-donor pairs [8, 9]. Moreover, an ethnicity-driven risk of suffering GVHD after HSCT

References

[1]  P. Ljungman, M. Bregni, M. Brune et al., “Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe 2009,” Bone Marrow Transplantation, vol. 45, no. 2, pp. 219–234, 2010.
[2]  C. Anasetti, “What are the most important donor and recipient factors affecting the outcome of related and unrelated allogeneic transplantation?” Best Practice and Research: Clinical Haematology, vol. 21, no. 4, pp. 691–697, 2008.
[3]  A. M. Dickinson, “Risk assessment in haematopoietic stem cell transplantation: pre-transplant patient and donor factors: non-HLA genetics,” Best Practice and Research: Clinical Haematology, vol. 20, no. 2, pp. 189–207, 2007.
[4]  S. J. Lee, J. Klein, M. Haagenson et al., “High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation,” Blood, vol. 110, no. 13, pp. 4576–4583, 2007.
[5]  B. E. Shaw, R. Arguello, C. A. Garcia-Sepulveda, and J. A. Madrigal, “The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation: review,” British Journal of Haematology, vol. 150, no. 3, pp. 251–258, 2010.
[6]  A. M. Dickinson, “Non-HLA genetics and predicting outcome in HSCT,” International Journal of Immunogenetics, vol. 35, no. 4-5, pp. 375–380, 2008.
[7]  M. Jagasia, M. Arora, M. E. Flowers, et al., “Risk factors for acute GVHD and survival after hematopoietic cell transplantation,” Blood, vol. 119, no. 1, pp. 296–307, 2012.
[8]  C. Baron, R. Somogyi, L. D. Greller et al., “Prediction of Graft-versus-host disease in humans by donor gene-expression profiling,” PLoS Medicine, vol. 4, no. 1, article e23, 2007.
[9]  A. M. Dickinson and E. Holler, “Polymorphisms of cytokine and innate immunity genes and GVHD,” Best Practice and Research: Clinical Haematology, vol. 21, no. 2, pp. 149–164, 2008.
[10]  H. Oh, F. R. Loberiza, M. J. Zhang et al., “Comparison of graft-versus-host-disease and survival after HLA-identical sibling bone marrow transplantation in ethnic populations,” Blood, vol. 105, no. 4, pp. 1408–1416, 2005.
[11]  S. Morishima, S. Ogawa, A. Matsubara et al., “Impact of highly conserved HLA haplotype on acute graft-versus-host disease,” Blood, vol. 115, no. 23, pp. 4664–4670, 2010.
[12]  N. Ray, D. Wegmann, N. J. R. Fagundes, S. Wang, A. Ruiz-Linares, and L. Excoffier, “A statistical evaluation of models for the initial settlement of the american continent emphasizes the importance of gene flow with Asia,” Molecular Biology and Evolution, vol. 27, no. 2, pp. 337–345, 2010.
[13]  N. Brucato, O. Cassar, L. Tonasso et al., “The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana,” BMC Evolutionary Biology, vol. 10, article 314, 2010.
[14]  M. L. Catelli, V. Alvarez-Iglesias, A. Gomez-Carballa, et al., “The impact of modern migrations on present-day multi-ethnic Argentina as recorded on the mitochondrial DNA genome,” BMC Genetics, vol. 12, article 77, 2011.
[15]  F. F. Gonzalez-Galarza, S. Christmas, D. Middleton, and A. R. Jones, “Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations,” Nucleic Acids Research, vol. 39, no. 1, pp. D913–D919, 2011.
[16]  M. Cerna, M. Falco, H. Friedman et al., “Differences in HLA class II alleles of isolated South American Indian populations from Brazil and Argentina,” Human Immunology, vol. 37, no. 4, pp. 213–220, 1993.
[17]  M. A. Fernández-Vi?a, A. M. Lázaro, C. Y. Marcos et al., “Dissimilar evolution of B-locus versus A-locus and class II loci of the HLA region in South American Indian tribes,” Tissue Antigens, vol. 50, no. 3, pp. 233–250, 1997.
[18]  A. Arnaiz-Villena, N. Siles, J. Moscoso et al., “Origin of Aymaras from Bolivia and their relationship with other Amerindians according to HLA genes,” Tissue Antigens, vol. 65, no. 4, pp. 379–390, 2005.
[19]  J. Martinez-Laso, N. Siles, J. Moscoso et al., “Origin of Bolivian Quechua Amerindians: their relationship with other American Indians and Asians according to HLA genes,” European Journal of Medical Genetics, vol. 49, no. 2, pp. 169–185, 2006.
[20]  A. M. Lázaro, M. E. Moraes, C. Y. Marcos, J. R. Moraes, M. A. Fernández-Vi?a, and P. Stastny, “Evolution of HLA-class I compared to HLA-class II polymorphism in Terena, a South-American Indian tribe,” Human Immunology, vol. 60, no. 11, pp. 1138–1149, 1999.
[21]  E. Gómez-Casado, J. Martínez-Laso, J. Moscoso et al., “Origin of Mayans according to HLA genes and the uniqueness of Amerindians,” Tissue Antigens, vol. 61, no. 6, pp. 425–436, 2003.
[22]  J. E. García-Ortiz, L. Sandoval-Ramírez, H. Rangel-Villalobos et al., “High-resolution molecular characterization of the HLA class I and class II in the Tarahumara Amerindian population,” Tissue Antigens, vol. 68, no. 2, pp. 135–146, 2006.
[23]  F. Loeza, G. Vargas-Alarcón, F. Andrade et al., “Distribution of class I and class III MHC antigens in the Tarasco Amerindians,” Human Immunology, vol. 63, no. 2, pp. 143–148, 2002.
[24]  J. A. Hollenbach, G. Thomson, K. Cao et al., “HLA diversity, differentiation, and haplotype evolution in mesoamerican natives,” Human Immunology, vol. 62, no. 4, pp. 378–390, 2001.
[25]  G. Vargas-Alarcón, G. Hernández-Pacheco, J. Zu?iga et al., “Distribution of HLA-B alleles in Mexican Amerindian populations,” Immunogenetics, vol. 54, no. 11, pp. 756–760, 2003.
[26]  O. Benitez, M. Busson, D. Charron, and P. Loiseau, “HLA polymorphism in a Guarani-Indian population from Paraguay and its usefulness for the Hispano-Indian admixture study in Paraguay,” International Journal of Immunogenetics, vol. 38, no. 1, pp. 7–11, 2011.
[27]  A. Arnaiz-Villena, V. Gonzalez-Alcos, J. I. Serrano-Vela et al., “HLA genes in Uros from Titikaka Lake, Peru: origin and relationship with other Amerindians and worldwide populations,” International Journal of Immunogenetics, vol. 36, no. 3, pp. 159–167, 2009.
[28]  S. Mack, Y. Tsai, A. Sanchez-Mazas, and H. A. Erlich, “Anthropology/ human genetic diversity population reports,” in Proceedings of the 13th International Histocompatibility Workshop and Conference on Immunobiology of the Human Genetic Diversity Population Reports, IHWG Press, Seattle, Wash, USA, 2007.
[29]  Z. Layrisse, Y. Guedez, E. Domínguez et al., “Extended HLA haplotypes in a Carib Amerindian population: the Yucpa of the Perija Range,” Human Immunology, vol. 62, no. 9, pp. 992–1000, 2001.
[30]  M. S. Leffell, M. D. Fallin, H. A. Erlich et al., “HLA antigens, alleles and haplotypes among the Yup'ik Alaska natives: report of the ASHI Minority Workshops, part II,” Human Immunology, vol. 63, no. 7, pp. 614–625, 2002.
[31]  R. Williams, Y. F. Chen, R. Endres et al., “Molecular variation at the HLA-A, B, C, DRB1, DQA1, and DQB1 loci in full heritage American Indians in Arizona: private haplotypes and their evolution,” Tissue Antigens, vol. 74, no. 6, pp. 520–533, 2009.
[32]  M. S. Leffell, M. D. Fallin, W. H. Hildebrand, J. W. Cavett, B. A. Iglehart, and A. A. Zachary, “HLA alleles and haplotypes among the lakota sioux: report of the ASHI minority workshops, part III,” Human Immunology, vol. 65, no. 1, pp. 78–89, 2004.
[33]  D. Middleton, F. Williams, A. Meenagh et al., “Analysis of the distribution of HLA-A alleles in populations from five continents,” Human Immunology, vol. 61, no. 10, pp. 1048–1052, 2000.
[34]  F. Williams, A. Meenagh, C. Darke et al., “Analysis of the distribution of HLA-B alleles in populations from five continents,” Human Immunology, vol. 62, no. 6, pp. 645–650, 2001.
[35]  T. M. Ruiz, S. M. C. M. Da Costa, F. Ribas, P. R. Luz, S. S. Lima, and M. Da Gra?a Bicalho, “Human leukocyte antigen allelic groups and haplotypes in a Brazilian sample of volunteer donors for bone marrow transplant in Curitiba, Paraná, Brazil,” Transplantation Proceedings, vol. 37, no. 5, pp. 2293–2296, 2005.
[36]  P. Nigam, E. Dellalibera, L. Maurício-da-Silva, E. A. Donadi, and R. S. Silva, “Polymorphism of HLA class I genes in the Brazilian population from the Northeastern State of Pernambuco corroborates anthropological evidence of its origin,” Tissue Antigens, vol. 64, no. 2, pp. 204–209, 2004.
[37]  E. Arrieta-Bola?os, H. Maldonado-Torres, O. Dimitriu et al., “HLA-A, -B, -C, -DQB1, and -DRB1,3,4,5 allele and haplotype frequencies in the Costa Rica Central Valley Population and its relationship to worldwide populations,” Human Immunology, vol. 72, no. 1, pp. 80–86, 2011.
[38]  Y. R. Arias-Murillo, M. A. Castro-Jiménez, M. F. Ríos-Espinosa, J. J. López-Rivera, S. J. Echeverry-Coral, and O. Martínez-Nieto, “Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in Colombian population,” Colombia Medica, vol. 41, no. 4, pp. 336–343, 2010.
[39]  L. M. Rodríguez, M. C. Giraldo, N. García et al., “Human leucocyte antigen gene (HLA-A, HLA-B, HLA-DRB1) frequencies in deceased organ donor,” Biomedica, vol. 27, no. 4, pp. 537–547, 2007.
[40]  B. Sierra, R. Alegre, A. B. Pérez et al., “HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection,” Human Immunology, vol. 68, no. 6, pp. 531–540, 2007.
[41]  C. Parga-Lozano, D. Rey-Medrano, P. Gomez-Prieto et al., “HLA genes in Amerindian immigrants to Madrid (Spain): epidemiology and a virtual transplantation waiting list: amerindians in Madrid (Spain),” Molecular Biology Reports, vol. 38, no. 4, pp. 2263–2271, 2011.
[42]  C. A. Leal, F. Mendoza-Carrera, F. Rivas, S. Rodriguez-Reynoso, and E. Portilla-De Buen, “HLA-A and HLA-B allele frequencies in a mestizo population from Guadalajara, Mexico, determined by sequence-based typing,” Tissue Antigens, vol. 66, no. 6, pp. 666–673, 2005.
[43]  R. Barquera, J. Zú?iga, R. Hernández-Díaz et al., “HLA class I and class II haplotypes in admixed families from several regions of Mexico,” Molecular Immunology, vol. 45, no. 4, pp. 1171–1178, 2008.
[44]  O. Benitez, C. Dehay, C. Raffoux, and J. Colombani, “Métissage hispano-indien en Amérique du Sud: essai de compréhension grace à l'analyse sanguine du système HLA au Paraguay,” Hématologie, vol. 1, no. 5, pp. 437–439, 1995.
[45]  R. De Pablo, Y. Beraún, A. Nieto et al., “HLA class I and class II allele distribution in the Peruvian population,” Tissue Antigens, vol. 56, no. 6, pp. 507–514, 2000.
[46]  M. Maiers, L. Gragert, and W. Klitz, “High-resolution HLA alleles and haplotypes in the United States population,” Human Immunology, vol. 68, no. 9, pp. 779–788, 2007.
[47]  M. S. Leffell, W. S. Cherikh, G. Land, and A. A. Zachary, “Improved definition of human leukocyte antigen frequencies among minorities and applicability to estimates of transplant compatibility,” Transplantation, vol. 83, no. 7, pp. 964–972, 2007.
[48]  W. Klitz, L. Gragert, M. Maiers et al., “Four-locus high-resolution HLA typing in a sample of Mexican Americans,” Tissue Antigens, vol. 74, no. 6, pp. 508–513, 2009.
[49]  P. Sanchez-Velasco, E. Gomez-Casado, J. Martinez-Laso et al., “HLA alleles in isolated populations from north Spain: origin of the basques and the ancient Iberians,” Tissue Antigens, vol. 61, no. 5, pp. 384–392, 2003.
[50]  D. Comas, E. Mateu, F. Calafell et al., “HLA class I and class II DNA typing and the origin of Basques,” Tissue Antigens, vol. 51, no. 1, pp. 30–40, 1998.
[51]  M. Alcoceba, L. Mari'n, A. Balanzategui, M. E. Sarasquete, et al., “Frequency of HLA-A, -B and -DRB1 specificities and haplotypic associations in the population of Castilla y Leon (northwest-central Spain),” Tissue Antigens, vol. 78, no. 4, pp. 249–255, 2011.
[52]  C. Crespí, J. Milà, N. Martínez-Pomar et al., “HLA polymorphism in a Majorcan population of Jewish descent: comparison with Majorca, Minorca, Ibiza (Balearic Islands) and other Jewish communities,” Tissue Antigens, vol. 60, no. 4, pp. 282–291, 2002.
[53]  M. Muro, L. Marín, A. Torío et al., “HLA polymorphism in the Murcia population (Spain): in the cradle of the archaeologic Iberians,” Human Immunology, vol. 62, no. 9, pp. 910–921, 2001.
[54]  S. Rendine, I. Borelli, M. Barbanti, N. Sacchi, S. Roggero, and E. S. Curtoni, “HLA polymorphisms in Italian bone marrow donors: a regional analysis,” Tissue Antigens, vol. 52, no. 2, pp. 135–146, 1998.
[55]  J. N. Torimiro, J. K. Carr, N. D. Wolfe et al., “HLA class I diversity among rural rainforest inhabitants in Cameroon: identification of A?2612-B?4407 haplotype,” Tissue Antigens, vol. 67, no. 1, pp. 30–37, 2006.
[56]  J. M. Ellis, S. J. Mack, R. F. Leke, I. Quakyi, A. H. Johnson, and C. K. Hurley, “Diversity is demonstrated in class I HLA-A and HLA-B alleles in Cameroon, Africa: description of HLA-A?03012, ?2612, ?3006 and HLA-B?1403, ?4016, ?4703,” Tissue Antigens, vol. 56, no. 4, pp. 291–302, 2000.
[57]  H. Spínola, J. Bruges-Armas, D. Middleton, and A. Brehm, “HLA polymorphisms in Cabo Verde and Guiné-Bissau inferred from sequence-based typing,” Human Immunology, vol. 66, no. 10, pp. 1082–1092, 2005.
[58]  J. Bruges Armas, G. Destro-Bisol, A. López-Vazquez et al., “HLA class I variation in the West African Pygmies and their genetic relationship with other African populations,” Tissue Antigens, vol. 62, no. 3, pp. 233–242, 2003.
[59]  K. Cao, A. M. Moormann, K. E. Lyke et al., “Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci,” Tissue Antigens, vol. 63, no. 4, pp. 293–325, 2004.
[60]  A. A. A. Assane, G. M. Fabricio-Silva, J. Cardoso-Oliveira et al., “Human leukocyte antigen-A, -B, and -DRB1 allele and haplotype frequencies in the Mozambican population: a blood donor-based population study,” Human Immunology, vol. 71, no. 10, pp. 1027–1032, 2010.
[61]  J. Tang, E. Naik, C. Costello et al., “Characteristics of HLA class I and class II polymorphisms in Rwandan women,” Experimental and Clinical Immunogenetics, vol. 17, no. 4, pp. 185–198, 2000.
[62]  N. Saldanha, C. Spínola, M. R. Santos et al., “HLA polymorphisms in Forros and Angolares from Sao Tome Island (West Africa): evidence for the population origin,” Journal of Genetic Genealogy, vol. 5, no. 2, pp. 76–85, 2009.
[63]  A. Sanchez-Mazas, Q. G. Steiner, C. Grundschober, and J. M. Tiercy, “The molecular determination of HLA-Cw alleles, in the Mandenka (West Africa) reveals a close genetic relationship between Africans and Europeans,” Tissue Antigens, vol. 56, no. 4, pp. 303–312, 2000.
[64]  M. Paximadis, T. Y. Mathebula, N. L. Gentle, et al., “Human leukocyte antigen class I, (A, B, C) and II, (DRB1) diversity in the black and Caucasian South African population,” Human Immunology, vol. 73, no. 1, pp. 80–92, 2012.
[65]  G. H. Kijak, A. M. Walsh, R. N. Koehler et al., “HLA class i allele and haplotype diversity in Ugandans supports the presence of a major east African genetic cluster,” Tissue Antigens, vol. 73, no. 3, pp. 262–269, 2009.
[66]  H. Kaiser, “The application of electronic computers to factor analysis,” Educational and Psychological Measurement, vol. 20, pp. 141–151, 1960.
[67]  S. L. Bonatto and F. M. Salzano, “Diversity and age of the four major mtDNA haplogroups, and their implications for the peopling of the New World,” American Journal of Human Genetics, vol. 61, no. 6, pp. 1413–1423, 1997.
[68]  B. Bertoni, B. Budowle, M. Sans, S. A. Barton, and R. Chakraborty, “Admixture in Hispanics: distribution of ancestral population contributions in the continental United States,” Human Biology, vol. 75, no. 1, pp. 1–11, 2003.
[69]  R. Kosoy, R. Nassir, C. Tian et al., “Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America,” Human Mutation, vol. 30, no. 1, pp. 69–78, 2009.
[70]  S. Wang, N. Ray, W. Rojas, et al., “Geographic patterns of genome admixture in Latin American Mestizos,” PLoS Genetics, vol. 4, no. 3, Article ID e1000037, 2008.
[71]  L. G. Carvajal-Carmona, R. Ophoff, S. Service et al., “Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica,” Human Genetics, vol. 112, no. 5-6, pp. 534–541, 2003.
[72]  A. Cintado, O. Companioni, M. Nazabal et al., “Admixture estimates for the population of Havana City,” Annals of Human Biology, vol. 36, no. 3, pp. 350–360, 2009.
[73]  A. A. Vernaza-Kwiers, I. J. de Gómez, M. Díaz-Isaacs, C. J. Cuero, E. Pérez Guardia, and M. Moreno Saavedra, “Gene frequency and haplotypes of the HLA system in the Panamanian population,” Revista Médica de Panamá, vol. 20, no. 3, pp. 116–123, 1995.
[74]  E. A. Santiago-Delpín, S. De Echegaray, F. Rivera-Cruz, and A. Rodríguez-Trinidad, “The histocompatibility profile of the Puerto Rican population,” Transplantation Proceedings, vol. 34, no. 8, pp. 3075–3078, 2002.
[75]  I. Alvarez, M. Bengochea, R. Toledo, E. Carretto, and P. C. Hidalgo, “HLA class I antigen and HLA-A, -B, and -C haplotype frequencies in Uruguayans,” Human Biology, vol. 78, no. 4, pp. 513–525, 2006.
[76]  S. J. Easaw, D. E. Lake, M. Beer, K. Seiter, E. J. Feldman, and T. Ahmed, “Graft-versus-host disease. Possible higher risk for African American patients,” Cancer, vol. 78, no. 7, pp. 1492–1497, 1996.
[77]  K. S. Baker, S. M. Davies, N. S. Majhail et al., “Race and socioeconomic status influence outcomes of unrelated donor hematopoietic cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 15, no. 12, pp. 1543–1554, 2009.
[78]  P. N. Hari, N. S. Majhail, M. J. Zhang et al., “Race and outcomes of autologous hematopoietic cell transplantation for multiple myeloma,” Biology of Blood and Marrow Transplantation, vol. 16, no. 3, pp. 395–402, 2010.
[79]  Y. Morishima, “Impact of donor-recipient ethnicity on risk of acute graft-versus-host disease, leukemia relapse and survival in hematopoietic stem cell transplantation from HLA-compatible unrelated donors,” in Proceedings of the 51st ASH Annual Meeting and Exposition, A Report From the International Histocompatibility Workshop Group, New Orleans, Miss, USA, 2009.
[80]  M. Remberger, J. Aschan, B. L?nnqvist et al., “An ethnic role for chronic, but not acute, graft-versus-host disease after HLA-identical sibling stem cell transplantation,” European Journal of Haematology, vol. 66, no. 1, pp. 50–56, 2001.
[81]  D. S. Serna, S. J. Lee, M. J. Zhang et al., “Trends in survival rates after allogeneic hematopoietic stem-cell transplantation for acute and chronic leukemia by ethnicity in the United States and Canada,” Journal of Clinical Oncology, vol. 21, no. 20, pp. 3754–3760, 2003.
[82]  K. S. Baker, F. R. Loberiza, H. Yu et al., “Outcome of ethnic minorities with acute or chronic leukemia treated with hematopoietic stem-cell transplantation in the United States,” Journal of Clinical Oncology, vol. 23, no. 28, pp. 7032–7042, 2005.
[83]  S. C. Hoffmann, E. M. Stanley, E. D. Cox et al., “Ethnicity greatly influences cytokine gene polymorphism distribution,” American Journal of Transplantation, vol. 2, no. 6, pp. 560–567, 2002.
[84]  G. Suarez-Kurtz, J. P. Genro, M. O. de et al., “Global pharmacogenomics: impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians,” Pharmacogenomics Journal, vol. 12, no. 3, pp. 267–276, 2012.
[85]  G. Suarez-Kurtz and S. D. J. Pena, “Pharmacogenomics in the Americas: the impact of genetic admixture,” Current Drug Targets, vol. 7, no. 12, pp. 1649–1658, 2006.
[86]  B. Morera, R. Barrantes, and R. Marin-Rojas, “Gene admixture in the Costa Rican population,” Annals of Human Genetics, vol. 67, no. 1, pp. 71–80, 2003.
[87]  T. C. Lins, R. G. Vieira, B. S. Abreu et al., “Genetic heterogeneity of self-reported ancestry groups in an admixed Brazilian population,” Journal of Epidemiology, vol. 21, no. 4, pp. 240–245, 2011.
[88]  K. Hunley and M. Healy, “The impact of founder effects, gene flow, and European admixture on native American genetic diversity,” American Journal of Physical Anthropology, vol. 146, no. 4, pp. 530–538, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133