全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immune Recovery after Cyclophosphamide Treatment in Multiple Myeloma: Implication for Maintenance Immunotherapy

DOI: 10.1155/2011/269519

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple myeloma (MM) is a progressive B-lineage neoplasia characterized by clonal proliferation of malignant plasma cells. Increased numbers of regulatory T cells (Tregs) were determined in mouse models and in patients with MM, which correlated with disease burden. Thus, it became rational to target Tregs for treating MM. The effects of common chemotherapeutic drugs on Tregs are reviewed with a focus on cyclophosphamide (CYC). Studies indicated that selective depletion of Tregs may be accomplished following the administration of a low-dose CYC. We report that continuous nonfrequent administrations of CYC at low doses block the renewal of Tregs in MM-affected mice and enable the restoration of an efficient immune response against the tumor cells, thereby leading to prolonged survival and prevention of disease recurrence. Hence, distinctive time-schedule injections of low-dose CYC are beneficial for breaking immune tolerance against MM tumor cells. 1. Introduction Multiple myeloma (MM) is a progressive B lineage neoplasia characterized by clonal proliferation of malignant plasma cells that localize in the bone marrow (BM) replacing the normal BM population. A reduced level of polyclonal immunoglobulins is a consistent feature of active MM reflecting the suppression of CD19+ lymphocytes that correlate inversely with the disease stage. The relationship between myeloma plasma cells and the BM microenvironment is critical for the maintenance of the disease. Tumor cells and stromal cells interact via adhesion molecules and cytokine networks to simultaneously promote progression of the disease leading to bone destruction, vertebral collapse, hypercalcemia, renal failure, hypogammaglobulinemia, and peripheral neuropathy. The disease is associated with both cellular and humoral immune deficiencies [1]. Recent studies have revealed that CD4+CD25highFoxp3+ regulatory T cells (Tregs), which are physiologically engaged in the maintenance of immunological self-tolerance, play critical roles for the control of antitumor immune responses. Increased numbers of Tregs were documented in peripheral blood, tumor mass, and draining lymph nodes from patients of a wide spectrum of cancers. A strong correlation exists between Treg levels and the progression of cancer. The increased number of Tregs was reported to reflect poor prognosis [2] and is associated with suppression of T cell proliferation, downregulation of proinflammatory cytokines, and involvement in tumor tolerance to self antigens. Thus, new anticancer strategies involving interference in Treg biology by means of

References

[1]  S. J. Harrison and G. Cook, “Immunotherapy in multiple myeloma—possibility or probability?” British Journal of Haematology, vol. 130, no. 3, pp. 344–362, 2005.
[2]  T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004.
[3]  A. Laronne-Bar-On, D. Zipori, and N. Haran-Ghera, “Increased regulatory versus effector T cell development is associated with thymus atrophy in mouse models of multiple myeloma,” Journal of Immunology, vol. 181, no. 5, pp. 3714–3724, 2008.
[4]  A. Sharabi, A. Laronne-Bar-On, A. Meshorer, and N. Haran-Ghera, “Chemoimmunotherapy reduces the progression of multiple myeloma in a mouse model,” Cancer Prevention Research, vol. 3, no. 10, pp. 1265–1276, 2010.
[5]  R. D. Brown, B. Pope, E. Yuen, J. Gibson, and . De Joshua, “The expression of T cell related costimulatory molecules in multiple myeloma,” Leukemia and Lymphoma, vol. 31, no. 3-4, pp. 379–384, 1998.
[6]  M. A. Frassanito, A. Cusmai, and F. Dammacco, “Deregulated cytokine network and defective Th1 immune response in multiple myeloma,” Clinical and Experimental Immunology, vol. 125, no. 2, pp. 190–197, 2001.
[7]  H. Ogawara, H. Handa, T. Yamazaki et al., “High Th1/Th2 ratio in patients with multiple myeloma,” Leukemia Research, vol. 29, no. 2, pp. 135–140, 2005.
[8]  F. Mozaffari, L. Hansson, S. Kiaii et al., “Signalling molecules and cytokine production in T cells of multiple myeloma-increased abnormalities with advancing stage,” British Journal of Haematology, vol. 124, no. 3, pp. 315–324, 2004.
[9]  M. Urashima, A. Ogata, D. Chauhan et al., “Transforming growth factor-β1: differential effects on multiple myeloma versus normal B cells,” Blood, vol. 87, no. 5, pp. 1928–1938, 1996.
[10]  M. Jarahian, C. Watzl, Y. Issa, P. Altevogt, and F. Momburg, “Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells,” International Journal of Cancer, vol. 120, no. 12, pp. 2625–2634, 2007.
[11]  M. K. Brimnes, I. M. Svane, and H. E. Johnsen, “Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma,” Clinical and Experimental Immunology, vol. 144, no. 1, pp. 76–84, 2006.
[12]  Y. Onishi, Z. Fehervari, T. Yamaguchi, and S. Sakaguchi, “Foxp3 natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10113–10118, 2008.
[13]  G. Pratt, O. Goodyear, and P. Moss, “Immunodeficiency and immunotherapy in multiple myeloma,” British Journal of Haematology, vol. 138, no. 5, pp. 563–579, 2007.
[14]  M. J. Berendt and R. J. North, “T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor,” Journal of Experimental Medicine, vol. 151, no. 1, pp. 69–80, 1980.
[15]  G. Zhou and H. I. Levitsky, “Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance,” Journal of Immunology, vol. 178, no. 4, pp. 2155–2162, 2007.
[16]  J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3+ programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003.
[17]  S. F. Ziegler, “FOXP3: of mice and men,” Annual Review of Immunology, vol. 24, pp. 209–226, 2006.
[18]  K. Wing, Y. Onishi, P. Prieto-Martin et al., “CTLA-4 control over Foxp3 regulatory T cell function,” Science, vol. 322, no. 5899, pp. 271–275, 2008.
[19]  M. L. Chen, M. J. Pittet, L. Gorelik et al., “Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 2, pp. 419–424, 2005.
[20]  F. Ghiringhelli, C. Ménard, F. Martin, and L. Zitvogel, “The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression,” Immunological Reviews, vol. 214, no. 1, pp. 229–238, 2006.
[21]  H. W. Lim, P. Hillsamer, A. H. Banham, and C. H. Kim, “Cutting edge: direct suppression of B cells by CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 175, no. 7, pp. 4180–4183, 2005.
[22]  P. G. Coulie and T. Connerotte, “Human tumor-specific T lymphocytes: does function matter more than number?” Current Opinion in Immunology, vol. 17, no. 3, pp. 320–325, 2005.
[23]  M. Harris, “Monoclonal antibodies as therapeutic agents for cancer,” Lancet Oncology, vol. 5, no. 5, pp. 292–302, 2004.
[24]  D. H. Raulet, “Interplay of natural killer cells and their receptors with the adaptive immune response,” Nature Immunology, vol. 5, no. 10, pp. 996–1002, 2004.
[25]  S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama, “Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody,” Cancer Research, vol. 59, no. 13, pp. 3128–3133, 1999.
[26]  J. Shimizu, S. Yamazaki, and S. Sakaguchi, “Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity,” Journal of Immunology, vol. 163, no. 10, pp. 5211–5218, 1999.
[27]  C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001.
[28]  M. E. Brunkow, E. W. Jeffery, K. A. Hjerrild et al., “Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse,” Nature Genetics, vol. 27, no. 1, pp. 68–73, 2001.
[29]  R. S. Wildin, F. Ramsdell, J. Peake et al., “X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy,” Nature Genetics, vol. 27, no. 1, pp. 18–20, 2001.
[30]  L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” The New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003.
[31]  R. P. Petersen, M. J. Campa, J. Sperlazza et al., “Tumor infiltrating FOXP3 regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients,” Cancer, vol. 107, no. 12, pp. 2866–2872, 2006.
[32]  M. Beyer, M. Kochanek, T. Giese et al., “In vivo peripheral expansion of naive CD4+CD25+ FoxP3+ regulatory T cells in patients with multiple myeloma,” Blood, vol. 107, no. 10, pp. 3940–3949, 2006.
[33]  S. Feyler, M. Von Lilienfeld-Toal, S. Jarmin et al., “CD4+CD25+FoxP3v regulatory T cells are increased whilst CD3+CD4?CD8?αβTCR+ Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden,” British Journal of Haematology, vol. 144, no. 5, pp. 686–695, 2009.
[34]  L. S. Taams, J. Smith, M. H. Rustin, M. Salmon, L. W. Poulter, and A. N. Akbar, “Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population,” European Journal of Immunology, vol. 31, no. 4, pp. 1122–1131, 2001.
[35]  H. Jonuleit, E. Schmitt, M. Stassen, A. Tuettenberg, J. Knop, and A. H. Enk, “Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood,” Journal of Experimental Medicine, vol. 193, no. 11, pp. 1285–1294, 2001.
[36]  R. H. Prabhala, P. Neri, J. E. Bae et al., “Dysfunctional T regulatory cells in multiple myeloma,” Blood, vol. 107, no. 1, pp. 301–304, 2006.
[37]  J. Radl, J. W. Croese, C. Zurcher, M. H. M. Van Den Enden-Vieveen, and A. M. De Leeuw, “Animal model of human disease. Multiple myeloma,” American Journal of Pathology, vol. 132, no. 3, pp. 593–597, 1988.
[38]  K. Vanderkerken, H. De Raeve, E. Goes et al., “Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse,” British Journal of Cancer, vol. 76, no. 4, pp. 451–460, 1997.
[39]  P. Correale, M. G. Cusi, K. Y. Tsang et al., “Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients,” Journal of Clinical Oncology, vol. 23, no. 35, pp. 8950–8958, 2005.
[40]  J. M. D. Plate, A. E. Plate, S. Shott, S. Bograd, and J. E. Harris, “Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas,” Cancer Immunology, Immunotherapy, vol. 54, no. 9, pp. 915–925, 2005.
[41]  S. Barni, P. Lissoni, F. Paolorossi et al., “Mitoxantrone as a single agent in pretreated metastatic breast cancer: effects on T lymphocyte subsets and their relation to clinical response,” Tumori, vol. 77, no. 3, pp. 227–231, 1991.
[42]  U. Hegde, A. Chhabra, S. Chattopadhyay, R. Das, S. Ray, and N. G. Chakraborty, “Presence of low dose of fludarabine in cultures blocks regulatory T cell expansion and maintains tumor-specific cytotoxic T lymphocyte activity generated with peripheral blood lymphocytes,” Pathobiology, vol. 75, no. 3, pp. 200–208, 2008.
[43]  M. Beyer, M. Kochanek, K. Darabi et al., “Reduced frequencies and suppressive function of CD4CD25 regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine,” Blood, vol. 106, no. 6, pp. 2018–2025, 2005.
[44]  C. Galustian, B. Meyer, M. C. Labarthe et al., “The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells,” Cancer Immunology, Immunotherapy, vol. 58, no. 7, pp. 1033–1045, 2009.
[45]  E. Proietti, G. Greco, B. Garrone et al., “Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice,” Journal of Clinical Investigation, vol. 101, no. 2, pp. 429–441, 1998.
[46]  S. Brode and A. Cooke, “Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide,” Critical Reviews in Immunology, vol. 28, no. 2, pp. 109–126, 2008.
[47]  M. E. C. Lutsiak, R. T. Semnani, R. De Pascalis, S. V. S. Kashmiri, J. Schlom, and H. Sabzevari, “Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide,” Blood, vol. 105, no. 7, pp. 2862–2868, 2005.
[48]  R. P. M. Sutmuller, L. M. Van Duivenvoorde, A. Van Elsas et al., “Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 823–832, 2001.
[49]  F. Ghiringhelli, N. Larmonier, E. Schmitt et al., “CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative,” European Journal of Immunology, vol. 34, no. 2, pp. 336–344, 2004.
[50]  A. P. Castano, P. Mroz, M. X. Wu, and M. R. Hamblin, “Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5495–5500, 2008.
[51]  A. M. Ercolini, B. H. Ladle, E. A. Manning et al., “Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response,” Journal of Experimental Medicine, vol. 201, no. 10, pp. 1591–1602, 2005.
[52]  M. J. Turk, J. A. Guevara-Pati?o, G. A. Rizzuto, M. E. Engelhorn, and A. N. Houghton, “Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells,” Journal of Experimental Medicine, vol. 200, no. 6, pp. 771–782, 2004.
[53]  G. Schiavoni, F. Mattei, T. Di Pucchio et al., “Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer,” Blood, vol. 95, no. 6, pp. 2024–2030, 2000.
[54]  J. Y. Liu, Y. Wu, X. S. Zhang et al., “Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine,” Cancer Immunology, Immunotherapy, vol. 56, no. 10, pp. 1597–1604, 2007.
[55]  F. Ghiringhelli, C. Menard, P. E. Puig et al., “Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients,” Cancer Immunology, Immunotherapy, vol. 56, no. 5, pp. 641–648, 2007.
[56]  D. Laheru, E. Lutz, J. Burke et al., “Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation,” Clinical Cancer Research, vol. 14, no. 5, pp. 1455–1463, 2008.
[57]  S. Audia, A. Nicolas, D. Cathelin et al., “Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes,” Clinical and Experimental Immunology, vol. 150, no. 3, pp. 523–530, 2007.
[58]  T. F. Greten, L. A. Ormandy, A. Fikuart et al., “Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC,” Journal of Immunotherapy, vol. 33, no. 2, pp. 211–218, 2010.
[59]  A. Sharabi and N. H. Ghera, “Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy,” Advances in Cancer Research, vol. 107, pp. 1–37, 2010.
[60]  M. J. Smyth and D. I. Godfrey, “NKT cells and tumor immunity—a double-edged sword,” Nature Immunology, vol. 1, no. 6, pp. 459–460, 2000.
[61]  A. L. Cava, L. V. Kaer, and . Fu-Dong-Shi, “CD4+CD25+ Tregs and NKT cells: regulators regulating regulators,” Trends in Immunology, vol. 27, no. 7, pp. 322–327, 2006.
[62]  L. Zitvogel, M. Terme, C. Borg, and G. Trinchieri, “Dendritic cell-NK cell cross-talk: regulation and physiopathology,” Current Topics in Microbiology and Immunology, vol. 298, pp. 157–174, 2005.
[63]  H. Arase, N. Arase, K. Ogasawara, R. A. Good, and K. Onoe, “An NK1.1+ CD48+ single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V(β) family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 14, pp. 6506–6510, 1992.
[64]  K. Liu, J. Idoyaga, A. Charalambous et al., “Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells,” Journal of Experimental Medicine, vol. 202, no. 11, pp. 1507–1516, 2005.
[65]  M. J. Smyth, N. Y. Crowe, Y. Hayakawa, K. Takeda, H. Yagita, and D. I. Godfrey, “NKT cells—conductors of tumor immunity?” Current Opinion in Immunology, vol. 14, no. 2, pp. 165–171, 2002.
[66]  N. Misra, J. Bayry, S. Lacroix-Desmazes, M. D. Kazatchkine, and S. V. Kaveri, “Cutting Edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells,” Journal of Immunology, vol. 172, no. 8, pp. 4676–4680, 2004.
[67]  L. H?ltl, R. Ramoner, C. Zelle-Rieser et al., “Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide,” Cancer Immunology, Immunotherapy, vol. 54, no. 7, pp. 663–670, 2005.
[68]  N. Larmonier, M. Marron, Y. Zeng et al., “Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10,” Cancer Immunology, Immunotherapy, vol. 56, no. 1, pp. 48–59, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133