Multiple myeloma (MM) is a B-cell malignancy that is currently felt to be incurable. Despite recently approved novel targeted treatments such as lenalidomide and bortezomib, most MM patients' relapse is emphasizing the need for effective and well-tolerated therapies for this deadly disease. The use of oncolytic viruses has garnered significant interest as cancer therapeutics in recent years, and are currently under intense clinical investigation. Both naturally occurring and engineered DNA and RNA viruses have been investigated preclinically as treatment modalities for several solid and hematological malignancies. Presently, only a genetically modified measles virus is in human clinical trials for MM. The information obtained from this and other future clinical trials will guide clinical application of oncolytic viruses as anticancer agents for MM. This paper provides a timely overview of the history of oncolytic viruses for the treatment of MM and future strategies for the optimization of viral therapy for this disease. 1. Introduction Multiple myeloma (MM) is a clonal neoplasm of plasma cells derived from the B-lymphocyte lineage that is part of a spectrum of diseases ranging from monoclonal gammopathy of undetermined significance (MGUS) to plasma cell leukemia. It is the most common primary bone cancer and involves malignant plasma cells progressively infiltrating the bone marrow and producing a monoclonal immunoglobulin (Ig) (M-protein) [1]. Overt myeloma (advanced disease) is manifested by pathophysiological consequences such as osteolytic bone lesions, hypercalcemia, recurrent bacterial infections, anemia, and renal failure [2]. Over 70,000 people in North America are currently affected by MM with an annual incidence of greater than 15,000. Presently, MM accounts for 10% of hematological malignancies and represent 1-2% of all cancer-related deaths [3]. The disease remains incurable with current treatments with a median survival of 3–5 years [4, 5]. MM follows a relapsing course in the majority of patients, regardless of treatment regimen or initial response to treatment. Accordingly, it has become imperative to find novel, more effective treatment options for MM. 1.1. Currently Available Therapies for Multiple Myeloma Disease management of MM has improved with the introduction of several new agents such as bortezomib (Velcade, a proteasome inhibitor), thalidomide, and the thalidomide analogue lenalidomide (Revlimid, immune modulator), and thus these drugs have now become current mainstays in MM treatment. These agents as monotherapies (bortezomib)
References
[1]
B. Barlogie, J. Epstein, P. Selvanayagam, and R. Alexanian, “Plasma cell myeloma—new biological insights and advances in therapy,” Blood, vol. 73, no. 4, pp. 865–879, 1989.
[2]
N. G. Kastrinakis, V. G. Gorgoulis, P. G. Foukas, M. A. Dimopoulos, and C. Kittas, “Molecular aspects of multiple myeloma,” Annals of Oncology, vol. 11, no. 10, pp. 1217–1228, 2000.
[3]
P. M. Carli, J. W. W. Coebergh, and A. Verdecchia, “Variation in survival of adult patients with haematological malignancies in europe since 1978,” European Journal of Cancer, vol. 34, no. 14, pp. 2253–2263, 1998.
[4]
P. R. Greipp, J. San Miguel, B. G. M. Durie et al., “International staging system for multiple myeloma,” Journal of Clinical Oncology, vol. 23, no. 15, pp. 3412–3420, 2005.
[5]
R. A. Kyle, M. A. Gertz, T. E. Witzig et al., “Review of 1027 patients with newly diagnosed multiple myeloma,” Mayo Clinic Proceedings, vol. 78, no. 1, pp. 21–33, 2003.
[6]
M. Delforge, J. Bladé, M. A. Dimopoulos et al., “Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues,” The Lancet Oncology, vol. 11, no. 11, pp. 1086–1095, 2010.
[7]
N. DePace, “Sulla comparsa di un enorme cancro vegetante del collo dell'utero senza cura chirurgica,” Ginecologia, vol. 9, pp. 82–89, 1921.
[8]
A. Z. Bluming and J. L. Ziegler, “Regression of Burkitt's lymphoma in association with measles infection,” Lancet, vol. 2, no. 7715, pp. 105–106, 1971.
[9]
A. M. Taqi, M. B. Abdurrahman, A. M. Yakubu, and A. F. Fleming, “Regression of Hodgkin's disease after measles,” Lancet, vol. 1, no. 8229, p. 1112, 1981.
[10]
A. E. Moore, “Effects of viruses on tumors,” Annual Review of Microbiology, vol. 8, pp. 393–410, 1954.
[11]
J. Sinkovics and J. Horvath, “New developments in the virus therapy of cancer: a historical review,” Intervirology, vol. 36, no. 4, pp. 193–214, 1993.
[12]
A. Kawa and S. Arakawa, “The effect of attenuated vaccinia virus AS strain on multiple myeloma: a case report,” Japanese Journal of Experimental Medicine, vol. 57, no. 1, pp. 79–81, 1987.
[13]
Vaccine Therapy With or Without Cyclophosphamide in Treating Patients With Recurrent or Refractory Multiple Myeloma (NCT00450814), http://www.mayoclinic.org/multiple-myeloma/clintrials.html.
[14]
D. Naniche, G. Varior-Krishnan, F. Cervoni et al., “Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus,” Journal of Virology, vol. 67, no. 10, pp. 6025–6032, 1993.
[15]
R. E. Dorig, A. Marcil, A. Chopra, and C. D. Richardson, “The human CD46 molecule is a receptor for measles virus (Edmonston strain),” Cell, vol. 75, no. 2, pp. 295–305, 1993.
[16]
H. Tatsuo, N. Ono, K. Tanaka, and Y. Yanagi, “Slam (CDw150) is a cellular receptor for measles virus,” Nature, vol. 406, no. 6798, pp. 893–897, 2000.
[17]
T. F. Wild, E. Malvoisin, and R. Buckland, “Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion,” Journal of General Virology, vol. 72, no. 2, pp. 439–442, 1991.
[18]
T. Nakamura and S. J. Russell, “Oncolytic measles viruses for cancer therapy,” Expert Opinion on Biological Therapy, vol. 4, no. 10, pp. 1685–1692, 2004.
[19]
B. D. Anderson, T. Nakamura, S. J. Russell, and K.-W. Peng, “High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus,” Cancer Research, vol. 64, no. 14, pp. 4919–4926, 2004.
[20]
K.-W. Peng, G. J. Ahmann, L. Pham, P. R. Greipp, R. Cattaneo, and S. J. Russell, “Systemic therapy of myeloma xenografts by an attenuated measles virus,” Blood, vol. 98, no. 7, pp. 2002–2007, 2001.
[21]
L. K. Phuong, C. Allen, K. W. Peng et al., “Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme,” Cancer Research, vol. 63, no. 10, pp. 2462–2469, 2003.
[22]
D. Dingli, K. W. Peng, M. E. Harvey et al., “Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter,” Blood, vol. 103, no. 5, pp. 1641–1646, 2004.
[23]
K. W. Peng, G. J. Ahmann, L. Pham, P. R. Greipp, R. Cattaneo, and S. J. Russell, “Systemic therapy of myeloma xenografts by an attenuated measles virus,” Blood, vol. 98, no. 7, pp. 2002–2007, 2001.
[24]
K. W. Peng, S. Facteau, T. Wegman, D. O'Kane, and S. J. Russell, “Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides,” Nature Medicine, vol. 8, no. 5, pp. 527–531, 2002.
[25]
E. Galanis, A. Bateman, K. Johnson et al., “Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas,” Human Gene Therapy, vol. 12, no. 7, pp. 811–821, 2001.
[26]
P. Msaouel, A. Dispenzieri, and E. Galanis, “Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview,” Current Opinion in Molecular Therapeutics, vol. 11, no. 1, pp. 43–53, 2009.
[27]
R. M. Myers, S. M. Greiner, M. E. Harvey et al., “Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide,” Clinical Pharmacology and Therapeutics, vol. 82, no. 6, pp. 700–710, 2007.
[28]
K. L. Tyler and B. N. Fields, “Reoviruses,” in Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley, Eds., pp. 1597–1623, Lippincott-Raven, Philadelphia, Pa, USA, 1996.
[29]
A. George, S. I. Kost, C. L. Witzleben, J. J. Cebra, and D. H. Rubin, “Reovirus-induced liver disease in severe combined immunodeficient (SCID) mice. A model for the study of viral infection, pathogenesis, and clearance,” Journal of Experimental Medicine, vol. 171, no. 3, pp. 929–934, 1990.
[30]
B. Sherry, X. Y. Li, K. L. Tyler, J. M. Cullen, and H. W. Virgin, “Lymphocytes protect against and are not required for reovirus-induced myocarditis,” Journal of Virology, vol. 67, no. 10, pp. 6119–6124, 1993.
[31]
B. L. Haller, M. L. Barkon, G. P. Vogler, and H. W. Virgin, “Genetic mapping of reovirus virulence and organ tropism in severe combined immunodeficient mice: organ-specific virulence genes,” Journal of Virology, vol. 69, no. 1, pp. 357–364, 1995.
[32]
B. L. Haller, M. L. Barkon, X. Y. Li et al., “Brain- and intestine-specific variants of reovirus serotype 3 strain dearing are selected during chronic infection of severe combined immunodeficient mice,” Journal of Virology, vol. 69, no. 6, pp. 3933–3937, 1995.
[33]
L. Rosen, “Serologic grouping of reoviruses by hemagglutination-inhibition,” American Journal of Hygiene, vol. 71, pp. 242–249, 1960.
[34]
M. L. Nibert, L. A. Schiff, and B. N. Fields, “Reoviruses and their replication,” in Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley, Eds., pp. 1557–1596, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 1996.
[35]
J. E. Strong, M. C. Coffey, D. Tang, P. Sabinin, and P. W. K. Lee, “The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus,” EMBO Journal, vol. 17, no. 12, pp. 3351–3362, 1998.
[36]
E. S. Barton, J. C. Forrest, J. L. Connolly et al., “Junction adhesion molecule is a receptor for reovirus,” Cell, vol. 104, no. 3, pp. 441–451, 2001.
[37]
M. C. Coffey, J. E. Strong, P. A. Forsyth, and P. W. K. Lee, “Reovirus therapy of tumors with activated Ras pathway,” Science, vol. 282, no. 5392, pp. 1332–1334, 1998.
[38]
K. L. Norman, K. Hirasawa, A. D. Yang, M. A. Shields, and P. W. K. Lee, “Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11099–11104, 2004.
[39]
K. L. Norman, M. C. Coffey, K. Hirasawa et al., “Reovirus oncolysis of human breast cancer,” Human Gene Therapy, vol. 13, no. 5, pp. 641–652, 2002.
[40]
C. M. Thirukkumaran, M. J. Nodwell, K. Hirasawa et al., “Oncolytic viral therapy for prostate cancer: efficacy of reovirus as a biological therapeutic,” Cancer Research, vol. 70, no. 6, pp. 2435–2444, 2010.
[41]
M. E. Wilcox, W. Yang, D. Senger et al., “Reovirus as an oncolytic agent against experimental human malignant gliomas,” Journal of the National Cancer Institute, vol. 93, no. 12, pp. 903–912, 2001.
[42]
K. Hirasawa, S. G. Nishikawa, K. L. Norman, T. Alain, A. Kossakowska, and P. W. K. Lee, “Oncolytic reovirus against ovarian and colon cancer,” Cancer Research, vol. 62, no. 6, pp. 1696–1701, 2002.
[43]
T. Alain, K. Hirasawa, K. J. Pon et al., “Reovirus therapy of lymphoid malignancies,” Blood, vol. 100, no. 12, pp. 4146–4153, 2002.
[44]
C. M. Thirukkumaran, J. M. Luider, D. A. Stewart et al., “Reovirus oncolysis as a novel purging strategy for autologous stem cell transplantation,” Blood, vol. 102, no. 1, pp. 377–387, 2003.
[45]
M. Portier, J. P. Moles, G. R. Mazars et al., “P53 and RAS gene mutations in multiple myeloma,” Oncogene, vol. 7, no. 12, pp. 2539–2543, 1992.
[46]
P. Liu, T. Leong, L. Quam et al., “Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group phase III trial,” Blood, vol. 88, no. 7, pp. 2699–2706, 1996.
[47]
C. M. Thirukkumaran, Z. Shi, D. Stewart, et al., “Reovirus successfully purges multiple myeloma ex vivo and does not affect human CD34+ cells engraftment in a murine transplantation model,” AACR Abstract, 2010.
[48]
C. Thirukkumaran, Z. Shi, J. Luider, and D. Morris, “Multiple myeloma oncolysis by reovirus is mediated through apoptosis via downregulating Akt signalling and simultaneous upregulation of Caspase 3 expression,” AACR Abstract, 2011.
[49]
J. Gibson, P. J. Ho, and D. Joshua, “Evolving transplant options for multiple myeloma: autologous and nonmyeloablative allogenic,” Transplantation Proceedings, vol. 36, no. 8, pp. 2501–2503, 2004.
[50]
J. O. Armitage, “Bone marrow transplantation in the treatment of patients with lymphoma,” Blood, vol. 73, no. 7, pp. 1749–1758, 1989.
[51]
A. S. Freedman, T. Takvorian, K. C. Anderson et al., “Autologous bone marrow transplantation in B-cell non-Hodgkin's lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse,” Journal of Clinical Oncology, vol. 8, no. 5, pp. 784–791, 1990.
[52]
E. D. Ball, L. E. Mills, G. G. Cornwell et al., “Autologous bone marrow transplantation for acute myeloid leukemia using monoclonal antibody-purged bone marrow,” Blood, vol. 75, no. 5, pp. 1199–1206, 1990.
[53]
J. G. Gribben, D. C. Linch, C. R. J. Singer, A. K. McMillan, M. Jarrett, and A. H. Goldstone, “Successful treatment of refractory Hodgkin's disease by high-dose combination chemotherapy and autologous bone marrow transplantation,” Blood, vol. 73, no. 1, pp. 340–344, 1989.
[54]
R. Wallerstein Jr., G. Spitzer, F. Dunphy et al., “A phase II study of mitoxantrone, etoposide, and thiotepa with autologous marrow support for patients with relapsed breast cancer,” Journal of Clinical Oncology, vol. 8, no. 11, pp. 1782–1788, 1990.
[55]
M. Eapen, “Report on state of the art in blood and marrow transplantation—the IBMTR/ABMTR summary slide with guide,” International Bone Marrow Transplant Registry Autologous Blood Marrow Transplant Registry, vol. 9, pp. 1–11, 2002.
[56]
W. Vogel, H.-G. Kopp, L. Kanz, and H. Einsele, “Myeloma cell contamination of peripheral blood stem-cell grafts can predict the outcome in multiple myeloma patients after high-dose chemotherapy and autologous stem-cell transplantation,” Journal of Cancer Research and Clinical Oncology, vol. 131, no. 4, pp. 214–218, 2005.
[57]
A. Gratwohl, J. Passweg, H. Baldomero, and A. Urbano-Ispizua, “Hematopoietic stem cell transplantation activity in Europe 1999,” Bone Marrow Transplantation, vol. 27, no. 9, pp. 899–916, 2001.
[58]
A. Gratwohl, H. Baldomero, O. Schmid et al., “Change in stem cell source for hematopoietic stem cell transplantation (HSCT) in Europe: a report of the EBMT activity survey 2003,” Bone Marrow Transplantation, vol. 36, no. 7, pp. 575–590, 2005.
[59]
A. B. Deisseroth, Z. Zu, D. Claxton, et al., “Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML,” Blood, vol. 83, no. 10, pp. 3068–3076, 1994.
[60]
International Bone MarrowTransplant Registry, 2004, http://www.ibmtr.org/.
[61]
D. G. Morris, P. A. Forsyth, A. H. Paterson, et al., “A phase 1 clinical trial evalutating entralesional REOLYSIN (reovirus) in histologically confirmed malignancies,” in Anonymous Proceedings of American Society of Clinical Oncology, p. 24, ASCO, 2002.
[62]
K. J. Harrington, E. M. Karapanagiotou, V. Roulstone et al., “Two-stage phase I dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers,” Clinical Cancer Research, vol. 16, no. 11, pp. 3067–3077, 2010.
[63]
R. Gollamudi, M. H. Ghalib, K. K. Desai et al., “Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors,” Investigational New Drugs, vol. 28, no. 5, pp. 641–649, 2010.
[64]
L. Vidal, H. S. Pandha, T. A. Yap et al., “A phase I study of intravenous oncolytic reovirus type 3 dearing in patients with advanced cancer,” Clinical Cancer Research, vol. 14, no. 21, pp. 7127–7137, 2008.
[65]
P. Forsyth, G. Roldán, D. George et al., “A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas,” Molecular Therapy, vol. 16, no. 3, pp. 627–632, 2008.
[66]
http://www.oncolyticsbiotech.com/.
[67]
G. M. Schiff and J. R. Sherwood, “Clinical activity of pleconaril in an experimentally induced coxsackievirus A21 respiratory infection,” Journal of Infectious Diseases, vol. 181, no. 1, pp. 20–26, 2000.
[68]
B. Dekel, R. Yoeli, L. Shulman, S. Padeh, and J. H. Passwell, “Localized thigh swelling mimicking a neoplastic process: involvement of coxsackie virus type A21,” Acta Paediatrica, International Journal of Paediatrics, vol. 91, no. 3, pp. 357–359, 2002.
[69]
G. G. Au, L. F. Lincz, A. Enno, and D. R. Shafren, “Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma,” British Journal of Haematology, vol. 137, no. 2, pp. 133–141, 2007.
[70]
E. J. Kelly, E. M. Hadac, S. Greiner, and S. J. Russell, “Engineering microRNA responsiveness to decrease virus pathogenicity,” Nature Medicine, vol. 14, no. 11, pp. 1278–1283, 2008.
[71]
D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, “Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry,” Journal of Virology, vol. 71, no. 6, pp. 4736–4743, 1997.
[72]
M. Pallansch and R. P. Roos, “Enteroviruses: polioviruses, coxsakieviruses, echoviruses, and newer enteroviruses,” in Fields Virology, P. M. Kinepe, D. E. Howley, R. A. Friffin, et al., Eds., pp. 723–776, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2001.
[73]
D. M. Knipe, et al., “Enteroviruses: polioviruses, coxsackieviruses, wchoviruses, and newer enteroviruses,” in Fields Virology, chapter 25, Lippincott, Wiliams and wilkins, Philadelphia, Pa, USA, 2007.
[74]
Coxsackie virus A 21 administered intravenously (IV) for solid tumor cancers (NCT00636558), http://www.clintrials.gov/.
[75]
B. R. Dietzschold, “Rhabdoviruses,” in Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley, Eds., pp. 341–346, Lippincott-Raven, Philadelphia, Pa, USA, 1996.
[76]
B. N. Fields and K. Hawkins, “Human infection with the virus of vesicular stomatitis during an epizootic,” New England Journal of Medicine, vol. 277, no. 19, pp. 989–994, 1967.
[77]
B. D. Lichty, A. T. Power, D. F. Stojdl, and J. C. Bell, “Vesicular stomatitis virus: re-inventing the bullet,” Trends in Molecular Medicine, vol. 10, no. 5, pp. 210–216, 2004.
[78]
D. F. Stojdl, B. Lichty, S. Knowles et al., “Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus,” Nature Medicine, vol. 6, no. 7, pp. 821–825, 2000.
[79]
B. D. Lichty, D. F. Stojdl, R. A. Taylor et al., “Vesicular stomatitis virus: a potential therapeutic virus for the treatment of hematologic malignancy,” Human Gene Therapy, vol. 15, no. 9, pp. 821–831, 2004.
[80]
A. Goel, S. K. Carlson, K. L. Classic et al., “Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Δ51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene,” Blood, vol. 110, no. 7, pp. 2342–2350, 2007.
[81]
B. Moss, “Poxviridae: the viruses and their replication,” in Fields Virology, D. M. Knipe and P. M. Howley, Eds., pp. 2849–2884, Lippincott, Williams and Wilkins, Philadelphia, Pa, USA, 2001.
[82]
S. H. Thorne, “Oncolytic vaccinia virus: from bedside to benchtop and back,” Current Opinion in Molecular Therapeutics, vol. 10, no. 4, pp. 387–392, 2008.
[83]
B. H. Park, T. Hwang, T. C. Liu et al., “Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial,” The Lancet Oncology, vol. 9, no. 6, pp. 533–542, 2008.
[84]
J. A. McCart, J. M. Ward, J. Lee et al., “Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes,” Cancer Research, vol. 61, no. 24, pp. 8751–8757, 2001.
[85]
H. Deng, N. Tang, A. E. Stief et al., “Oncolytic virotherapy for multiple myeloma using a tumour-specific double-deleted vaccinia virus,” Leukemia, vol. 22, no. 12, pp. 2261–2264, 2008.
[86]
C. M. Thirukkumaran, J. A. Russell, D. A. Stewart, and D. G. Morris, “Viral purging of haematological autografts: should we sneeze on the graft?” Bone Marrow Transplantation, vol. 40, no. 1, pp. 1–12, 2007.
[87]
L. Chen, M. Pulsipher, D. Chen et al., “Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources,” Journal of Clinical Investigation, vol. 98, no. 11, pp. 2539–2548, 1996.
[88]
F. Turturro, “Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride?” Gene Therapy, vol. 10, no. 2, pp. 100–104, 2003.
[89]
G. Teoh, L. Chen, M. Urashima et al., “Adenovirus vector-based purging of multiple myeloma cells,” Blood, vol. 92, no. 12, pp. 4591–4601, 1998.
[90]
Q. Liu and Y. Gazitt, “Adenovirus-mediated delivery of p53 results in substantial apoptosis to myeloma cells and is not cytotoxic to flow-sorted CD34+ hematopoietic progenitor cells and normal lymphocytes,” Experimental Hematology, vol. 28, no. 12, pp. 1354–1362, 2000.
[91]
R. K. Strair, W. Sheay, L. Goodell, E. White, A. B. Rabson, and D. J. Medina, “Adenovirus infection of primary malignant lymphoid cells,” Leukemia and Lymphoma, vol. 43, no. 1, pp. 37–49, 2002.
[92]
M. S. Fernandes, E. M. Gomes, L. D. Butcher et al., “Growth inhibition of human multiple myeloma cells by an oncolytic adenovirus carrying the CD40 ligand transgene,” Clinical Cancer Research, vol. 15, no. 15, pp. 4847–4856, 2009.
[93]
J. S. Senac, K. Doronin, S. J. Russell, D. F. Jelinek, P. R. Greipp, and M. A. Barry, “Infection and killing of multiple myeloma by adenoviruses,” Human Gene Therapy, vol. 21, no. 2, pp. 179–190, 2010.
[94]
D. Dingli, K. W. Peng, M. E. Harvey et al., “Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter,” Blood, vol. 103, no. 5, pp. 1641–1646, 2004.
[95]
G. Fulci, L. Breymann, D. Gianni et al., “Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 34, pp. 12873–12878, 2006.
[96]
H. Kambara, Y. Saeki, and E. A. Chiocca, “Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus,” Cancer Research, vol. 65, no. 24, pp. 11255–11258, 2005.
[97]
K. Ikeda, T. Ichikawa, H. Wakimoto et al., “Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses,” Nature Medicine, vol. 5, no. 8, pp. 881–887, 1999.
[98]
J. Qiao, H. Wang, T. Kottke et al., “Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus,” Clinical Cancer Research, vol. 14, no. 1, pp. 259–269, 2008.
[99]
E. Sobotkova, M. Duskova, T. Eckschlager, and V. Vonka, “Efficacy of reovirus therapy combined with cyclophosphamide and gene-modified cell vaccines on tumors induced in mice by HPV16-transformed cells,” International Journal of Oncology, vol. 33, no. 2, pp. 421–426, 2008.
[100]
H. T. Ong, K. Hasegawa, A. B. Dietz, S. J. Russell, and K. W. Peng, “Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies,” Gene Therapy, vol. 14, no. 4, pp. 324–333, 2007.
[101]
I. D. Iankov, B. Blechacz, C. Liu et al., “Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy,” Molecular Therapy, vol. 15, no. 1, pp. 114–122, 2007.
[102]
A. Munguia, T. Ota, T. Miest, and S. J. Russell, “Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth,” Gene Therapy, vol. 15, no. 10, pp. 797–806, 2008.
[103]
T. Hideshima, D. Chauhan, T. Hayashi et al., “The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma,” Molecular Cancer Therapeutics, vol. 1, no. 7, pp. 539–544, 2002.
[104]
Y. Alsayed, H. Ngo, J. Runnels et al., “Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma,” Blood, vol. 109, no. 7, pp. 2708–2717, 2007.
[105]
E. De Clercq, “Potential clinical applications of the CXCR4 antagonist bicyclam AMD3100,” Mini-Reviews in Medicinal Chemistry, vol. 5, no. 9, pp. 805–824, 2005.