全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice

DOI: 10.1155/2011/252953

Full-Text   Cite this paper   Add to My Lib

Abstract:

Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chainnull mice to support long-term engraftment of MGMTP140K-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMTP140K-transduced CD34+ cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMTP140K-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMTP140K-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chainnull mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chainnull mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin. 1. Introduction Development of humanized hematopoietic xenograft models that can monitor both short- and long-term reconstitution of human hematopoietic stem and progenitor cells (HSCs) will be a necessity as hematopoietic stem cell gene therapy trials continue to move forward and show promise in the clinic [1–7]. Clearly the use of small and large animal models has been an intricate component in paving the way for these successes [8–24]. Adverse events, however, directly related to retroviral-mediated insertional mutagenesis in human trials, have been reported in some patients enrolled in gene-therapy clinical trials for severe combined immunodeficiency (SCID)-X1 [25, 26] and chronic granulomatous disease [7, 27]. In addition, as preclinical studies in nonhuman primates, dogs, and mice have progressed over the past decade, development of leukemias most likely linked or initiated by vector-mediated insertional mutagenesis have been reported [28–33]. Therefore, more investigations are needed to understand retroviral-mediated genome instability in addition to the design of new vector systems to prevent this adverse event in human gene-therapy trials. The evaluation of both short- and long-term reconstituting human HSC will be critical in addressing these issues and is the focus of the current study. In the past, in vivo experiments designed to study the engraftment and

References

[1]  A. Aiuti, S. Slavin, M. Aker et al., “Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning,” Science, vol. 296, no. 5577, pp. 2410–2413, 2002.
[2]  A. Aiuti, S. Vai, A. Mortellaro et al., “Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement,” Nature Medicine, vol. 8, no. 5, pp. 423–425, 2002.
[3]  M. Cavazzana-Calvo, S. Hacein-Bey, G. de Saint-Basile, F. Le Deist, and A. Fischer, “Gene therapy of severe combined immunodeficiencies,” Transfusion Clinique et Biologique, vol. 7, pp. 259–260, 2000.
[4]  M. Cavazzana-Calvo, S. Hacein-Bey, G. De Saint Basile et al., “Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease,” Science, vol. 288, no. 5466, pp. 669–672, 2000.
[5]  J. Chinen, J. Davis, S. S. De Ravin et al., “Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency,” Blood, vol. 110, no. 1, pp. 67–73, 2007.
[6]  D. B. Kohn and F. Candotti, “Gene therapy fulfilling its promise,” The New England Journal of Medicine, vol. 360, no. 5, pp. 518–521, 2009.
[7]  M. G. Ott, M. Schmidt, K. Schwarzwaelder et al., “Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1,” Nature Medicine, vol. 12, no. 4, pp. 401–409, 2006.
[8]  B. C. Beard, G. D. Trobridge, C. Ironside, J. S. McCune, J. E. Adair, and H.-P. Kiem, “Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2345–2354, 2010.
[9]  S. Cai, A. Ernstberger, H. Wang et al., “In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMTP140K vector,” Experimental Hematology, vol. 36, no. 3, pp. 283–292, 2008.
[10]  S. Cai, J. R. Hartwell, R. J. Cooper et al., “In vivo effects of myeloablative alkylator therapy on survival and differentiation of MGMTP140K-transduced human G-CSF-mobilized peripheral blood cells,” Molecular Therapy, vol. 13, no. 5, pp. 1016–1026, 2006.
[11]  B. M. Davis, L. Humeau, and B. Dropulic, “In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication,” Molecular Therapy, vol. 9, no. 2, pp. 160–172, 2004.
[12]  C. E. Dunbar and A. Larochelle, “Gene therapy activates EVI1, destabilizes chromosomes,” Nature Medicine, vol. 16, no. 2, pp. 163–165, 2010.
[13]  Y.-J. Kim, Y.-S. Kim, A. Larochelle et al., “Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells,” Blood, vol. 113, no. 22, pp. 5434–5443, 2009.
[14]  E. L. Kreklau, K. E. Pollok, B. J. Bailey et al., “Hematopoietic expression of -methylguanine DNA methyltransferase-P140K allows intensive treatment of human glioma xenografts with combination -benzylguanine and 1,3-bis-(2-chloroethyl)-1-nitrosourea,” Molecular Cancer Therapeutics, vol. 2, no. 12, pp. 1321–1329, 2003.
[15]  A. Larochelle, U. Choi, Y. Shou et al., “In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene,” Journal of Clinical Investigation, vol. 119, no. 7, pp. 1952–1963, 2009.
[16]  T. Neff, B. C. Beard, L. J. Peterson, P. Anandakumar, J. Thompson, and H.-P. Kiem, “Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy,” Blood, vol. 105, no. 3, pp. 997–1002, 2005.
[17]  D. A. Persons, E. R. Allay, N. Sawai et al., “Successful treatment of murine β-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells,” Blood, vol. 102, no. 2, pp. 506–513, 2003.
[18]  D. A. Persons, J. A. Allay, A. Bonifacino et al., “Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors,” Blood, vol. 103, no. 3, pp. 796–803, 2004.
[19]  K. E. Pollok, J. R. Hartwell, A. Braber et al., “In vivo selection of human hematopoietic cells in a xenograft model using combined pharmacologic and genetic manipulations,” Human Gene Therapy, vol. 14, no. 18, pp. 1703–1714, 2003.
[20]  S. Ragg, M. Xu-Welliver, J. Bailey et al., “Direct reversal of DNA damage mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells,” Cancer Research, vol. 60, no. 18, pp. 5187–5195, 2000.
[21]  N. Sawai, D. A. Persons, S. Zhou, T. Lu, and B. P. Sorrentino, “Reduction in hematopoietic stem cell numbers with in vivo drug selection can be partially abrogated by HOXB4 gene expression,” Molecular Therapy, vol. 8, no. 3, pp. 376–384, 2003.
[22]  S. Sellers, T. J. Gomes, A. Larochelle et al., “Ex vivo expansion of retrovirally transduced primate CD34+ cells results in overrepresentation of clones with MDS1/evi1 insertion sites in the myeloid lineage after transplantation,” Molecular Therapy, vol. 18, no. 9, pp. 1633–1639, 2010.
[23]  J. Xie, A. Larochelle, I. Maric, M. Faulhaber, R. E. Donahue, and C. E. Dunbar, “Repetitive busulfan administration after hematopoietic stem cell gene therapy associated with a dominant HDAC7 clone in a nonhuman primate,” Human Gene Therapy, vol. 21, no. 6, pp. 695–703, 2010.
[24]  S. P. Zielske, J. S. Reese, K. T. Lingas, J. R. Donze, and S. L. Gerson, “In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1561–1570, 2003.
[25]  S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt et al., “A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency,” The New England Journal of Medicine, vol. 348, no. 3, pp. 255–256, 2003.
[26]  S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt et al., “LMO2 -associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003.
[27]  J.-Y. Métais and C. E. Dunbar, “The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy,” Molecular Therapy, vol. 16, no. 3, pp. 439–449, 2008.
[28]  X. Li, M. M. Le Beau, S. Ciccone et al., “Ex vivo culture of stem/progenitor cells predisposes cells to undergo apoptosis, and surviving stem/progenitor cells display cytogenetic abnormalities and an increased risk of malignancy,” Blood, vol. 105, no. 9, pp. 3465–3471, 2005.
[29]  Z. Li, J. Düllmann, B. Schiedlmeier et al., “Murine leukemia induced by retroviral gene marking,” Science, vol. 296, no. 5567, p. 497, 2002.
[30]  U. Modlich, O. S. Kustikova, M. Schmidt et al., “Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis,” Blood, vol. 105, no. 11, pp. 4235–4246, 2005.
[31]  A. W. Nienhuis, C. E. Dunbar, and B. P. Sorrentino, “Genotoxicity of retroviral integration in hematopoietic cells,” Molecular Therapy, vol. 13, no. 6, pp. 1031–1049, 2006.
[32]  R. Seggewiss, S. Pittaluga, R. L. Adler et al., “Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque,” Blood, vol. 107, no. 10, pp. 3865–3867, 2006.
[33]  X.-B. Zhang, B. C. Beard, G. D. Trobridge et al., “High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1502–1510, 2008.
[34]  L. D. Shultz, B. L. Lyons, L. M. Burzenski et al., “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” Journal of Immunology, vol. 174, no. 10, pp. 6477–6489, 2005.
[35]  S. L. Gerson, “Clinical relevance of MGMT in the treatment of cancer,” Journal of Clinical Oncology, vol. 20, no. 9, pp. 2388–2399, 2002.
[36]  J. A. Quinn, S. X. Jiang, D. A. Reardon et al., “Phase II trial of temozolomide plus -benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma,” Journal of Clinical Oncology, vol. 27, no. 8, pp. 1262–1267, 2009.
[37]  J. A. Quinn, J. Pluda, M. E. Dolan et al., “Phase II trial of carmustine plus -benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma,” Journal of Clinical Oncology, vol. 20, no. 9, pp. 2277–2283, 2002.
[38]  M. Jansen, U. R. Sorg, S. Ragg et al., “Hematoprotection and enrichment of transduced cells in vivo after gene transfer of MGMTP140k into hematopoietic stem cells,” Cancer Gene Therapy, vol. 9, no. 9, pp. 737–746, 2002.
[39]  M. D. Milsom, L. B. Woolford, G. P. Margison, R. K. Humphries, and L. J. Fairbairn, “Enhanced in vivo selection of bone marrow cells by retroviral-mediated coexpression of mutant -methylguanine-DNA-methyltransferase and HOXB4,” Molecular Therapy, vol. 10, no. 5, pp. 862–873, 2004.
[40]  N. Sawai, S. Zhou, E. F. Vanin, P. Houghton, T. P. Brent, and B. P. Sorrentino, “Protection and in vivo selection of hematopoietic stem cells using temozolomide, -benzylguanine, and an alkyltransferase-expressing retroviral vector,” Molecular Therapy, vol. 3, no. 1, pp. 78–87, 2001.
[41]  A. D. Miller, J. V. Garcia, N. von Suhr, C. M. Lynch, C. Wilson, and M. V. Eiden, “Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus,” Journal of Virology, vol. 65, no. 5, pp. 2220–2224, 1991.
[42]  K. E. Pollok, J. C. M. Van der Loo, R. J. Cooper et al., “Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood,” Human Gene Therapy, vol. 12, no. 17, pp. 2095–2108, 2001.
[43]  A. Peled, I. Petit, O. Kollet et al., “Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4,” Science, vol. 283, no. 5403, pp. 845–848, 1999.
[44]  S. P. McDermott, K. Eppert, E. R. Lechman, M. Doedens, and J. E. Dick, “Comparison of human cord blood engraftment between immunocompromised mouse strains,” Blood, vol. 116, no. 2, pp. 193–200, 2010.
[45]  J. L. McKenzie, O. I. Gan, M. Doedens, and J. E. Dick, “Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells,” Blood, vol. 106, no. 4, pp. 1259–1261, 2005.
[46]  L. D. Shultz, S. J. Banuelos, J. Leif et al., “Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells,” Experimental Hematology, vol. 31, no. 6, pp. 551–558, 2003.
[47]  L. D. Shultz, P. A. Schweitzer, S. W. Christianson et al., “Multiple defects in innate and adaptive immunologic function in NOD/LtSz- scid mice,” Journal of Immunology, vol. 154, no. 1, pp. 180–191, 1995.
[48]  T. Tanaka, F. Kitamura, Y. Nagasaka, K. Kuida, H. Suwa, and M. Miyasaka, “Selective long-term elimination of natural killer cells in vivo by an anti-interleukin 2 receptor β chain monoclonal antibody in mice,” Journal of Experimental Medicine, vol. 178, no. 3, pp. 1103–1107, 1993.
[49]  A. Larochelle, J. Vormoor, H. Hanenberg et al., “Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy,” Nature Medicine, vol. 2, no. 12, pp. 1329–1337, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133