The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production. 1. Introduction The conversion of plant cellulose biomass to fuel ethanol by microbial fermentation is the priority area of research, and the use of industrially suited microorganisms for the cost-effective biofuel production is the major technical challenge. Cellulosic ethanol would reduce our petroleum dependency, as ethanol is produced from the inexpensive and plentiful feed stocks. Efficient conversion of biomass to ethanol requires development of microorganisms capable of fermenting a wide range of carbohydrates and tolerating high concentrations of ethanol [1]. Metabolic engineering of microorganisms to utilize cellulose will be vital for improving the prospects of significant cellulosic ethanol production. Several Gram-negative bacteria such as Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis have been engineered for ethanol production [2–5]. Enteric bacteria normally produce less ethanol, because of their poor efficiency in converting pyruvate to ethanol. A suitable ethanologenic and cellulose-producing bacteria could be developed by transferring genes that encode the ethanol-fermenting enzymes [6]. Z. mobilis is one of the best ethanol producers which produces ethanol in the Entner-Doudoroff (ED) pathway, that is, homoethanol fermentation pathway with the help of two essential enzymes such as pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) encoded by pdc and adh II genes, respectively. PDC catalyzes the nonoxidative decarboxylation of pyruvate to produce acetaldehyde
References
[1]
J. Zaldivar, J. Nielsen, and L. Olsson, “Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 17–34, 2001.
[2]
K. Ohta, D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram, “Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose,” Applied and Environmental Microbiology, vol. 57, no. 10, pp. 2810–2815, 1991.
[3]
B. E. Wood, L. P. Yomano, S. W. York, and L. O. Ingram, “Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca,” Biotechnology Progress, vol. 21, no. 5, pp. 1366–1372, 2005.
[4]
H. Yanase, K. Nozaki, and K. Okamoto, “Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis,” Biotechnology Letters, vol. 27, no. 4, pp. 259–263, 2005.
[5]
P. T. Vasan, P. S. Piriya, D. I. G. Prabhu, and S. J. Vennison, “Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae,” Bioresource Technology, vol. 102, no. 3, pp. 2585–2589, 2011.
[6]
D. S. Beall and L. O. Ingram, “Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose,” Journal of Industrial Microbiology, vol. 11, no. 3, pp. 151–155, 1993.
[7]
C. Wills, P. Kratofil, D. Londo, and T. Martin, “Characterization of the two alcohol dehydrogenases of Zymomonas mobilis,” Archives of Biochemistry and Biophysics, vol. 210, no. 2, pp. 775–785, 1981.
[8]
A. D. Neale, R. K. Scopes, J. M. Kelly, and R. E. Wettenhall, “The two alcohol dehydrogenases of Zymomonas mobilis: purification by differential dye ligand chromatography, molecular characterisation and physiological roles,” European Journal of Biochemistry, vol. 154, no. 1, pp. 119–124, 1986.
[9]
L. O. Ingram, T. Conway, D. P. Clark, G. W. Sewell, and J. F. Preston, “Genetic engineering of ethanol production in Escherichia coli,” Applied and Environmental Microbiology, vol. 53, no. 10, pp. 2420–2425, 1987.
[10]
A. T. Lee, A. G. Malgorzata, P. Y. Lorraine, L. O. Ingram, and A. M. Julie, “Construction and expression of an ethanol production operon in Gram-positive bacteria,” Microbiology, vol. 151, no. 12, pp. 4023–4031, 2005.
[11]
J. S. Tolan and R. K. Finn, “Fermentation of D-Xylose and L-arabinose to ethanol by Erwinia chrysanthemi,” Applied and Environmental Microbiology, vol. 53, pp. 2033–2038, 1987.
[12]
E. Guedon, M. Desvaux, and H. Petitdemange, “Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 53–58, 2002.
[13]
J. Sambrook and D. W. Russel, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 3rd edition, 2003.
[14]
H. C. Bimboim and J. Doly, “A rapid alkaline extraction procedure for screening recombinant plasmid DNA,” Nucleic Acids Research, vol. 7, no. 6, pp. 1513–1523, 1979.
[15]
R. D. Lillie, H. J. Conn's Biological Stains, The Williams & Wilkins, Baltimore, Md, USA, 9th edition, 1977.
[16]
P. Gunasekaran, T. Karunakaran, B. Cami, A. G. Mukundan, L. Preziosi, and J. Baratti, “Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis,” Journal of Bacteriology, vol. 172, no. 12, pp. 6727–6735, 1990.
[17]
A. D. Gounaris, I. Turkenkopf, S. Buckwald, and A. Young, “Pyruvate decarboxylase. I. Protein dissociation into subunits under conditions in which thiamine pyrophosphate is released,” The Journal of Biological Chemistry, vol. 246, no. 5, pp. 1302–1309, 1971.
[18]
J. Fibla, S. Atrian, and R. G. Duarte, “Evidence of serine-protease activity closely associated with Drosophila alcohol dehydrogenase,” European Journal of Biochemistry, vol. 211, no. 1-2, pp. 357–365, 1993.
[19]
Y. Zhou, W. X. Ye, Y. Zhou, C. G. Zhu, M. Sun, and Z. N. Yu, “Ethanol tolerance, yield of melanin, swarming motility and growth are correlated with the expression levels of aiiA gene in Bacillus thuringiensis,” Enzyme and Microbial Technology, vol. 38, no. 7, pp. 967–974, 2006.
[20]
B. L. Fernandes and S. O. P. Da Costa, “High efficiency of transformation of Proteus mirabilis with a pUC19 derivative vector directs the expression and secretion of the Bacillus subtilis α-amylase gene,” Journal of Microbiological Methods, vol. 26, no. 1-2, pp. 147–150, 1996.
[21]
S. J. Vennison, Laboratory Manual for Genetic Engineering, PHI Publications, New Delhi, India, 2009.
[22]
J. Jeffers, Preparation of Ethanol by Fermentation, Ouachita Baptist University, 2000.
[23]
S. Fogel, R. L. Lancione, and A. E. Sewall, “Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions,” Applied and Environmental Microbiology, vol. 44, no. 1, pp. 113–120, 1982.
[24]
N. Kiransree, M. Sridhar, and L. V. Rao, “Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production,” Bioprocess Engineering, vol. 22, no. 3, pp. 243–246, 2000.
[25]
A. K. Hilaly, M. N. Karim, and J. C. Linden, “Use of an Extended Kalman Filter and development of an automated system for xylose fermentation by a recombinant Escherichia coli,” Journal of Industrial Microbiology, vol. 13, no. 2, pp. 83–89, 1994.
[26]
H. G. Lawford and J. D. Rousseau, “Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pLOI297 and KO11,” Applied Biochemistry and Biotechnology—Part A, vol. 57-58, pp. 293–305, 1996.
[27]
J. B. Doran, J. Cripe, M. Sutton, and B. Foster, “Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol,” Applied Biochemistry and Biotechnology—Part A, vol. 84–86, pp. 141–152, 2000.
[28]
V. Senthilkumar and P. Gunasekaran, “Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges,” Journal of Scientific and Industrial Research, vol. 64, no. 11, pp. 845–853, 2005.
[29]
A. P. Anand, S. J. Vennison, S. G. Sankar et al., “Digestion of cellulose, pectin, xylan and starch by the symbiotic gut bacteria in the intestine ofBombyx mori,” Insect Science, vol. 10, no. 107, pp. 1–20, 2009.
[30]
X. Q. Zhao, C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang, and F. W. Bai, “Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation,” Journal of Biotechnology, vol. 139, no. 1, pp. 55–60, 2009.
[31]
H. Yazawa, H. Iwahashi, and H. Uemura, “Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae,” Yeast, vol. 24, no. 7, pp. 551–560, 2007.