全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Factors Influencing the Abundance of the Side Population in a Human Myeloma Cell Line

DOI: 10.1155/2011/524845

Full-Text   Cite this paper   Add to My Lib

Abstract:

Side population (SP) refers to a group of cells, which is capable to efflux Hoechst 33342, a DNA-binding dye. SP cells exist both in normal and tumor tissues. Although SP abundance has been used as an indicator for disease prognostic and drug screening in many research projects, few studies have systematically examined the factors influencing SP analysis. In this study we aim to develop a more thorough understanding of the multiple factors involved in SP analysis including Hoechst 33342 staining and cell culture. RPMI-8226, a high SP percentage (SP%) human myeloma cell line was employed here. The results showed that SP% was subject to staining conditions including: viable cell proportion, dye concentration, staining cell density, incubation duration, staining volume, and mix interval. In addition, SP% was highest in day one after passage, while dropped steadily over time. This study shows that both staining conditions and culture duration can significantly affect SP%. In this case, any conclusions based on SP% should be interpreted cautiously. The relation between culture duration and SP% suggests that the incidence of SP cells may be related to cell proliferation and cell cycle phase. Maintaining these technical variables consistently is essential in SP research. 1. Introduction Side population (SP) cells were first described as a subset of adult mouse bone marrow with enriched hematopoietic stem cells (HSCs) [1, 2]. This subset was characterized by its ability to rapidly efflux the Hoechst 33342 DNA-binding dye and therefore shows a Hoechst profile on flow cytometry. Specifically they display a distinct staining pattern, based on the phenomenon of a differential emission of blue (450?nm) versus red (670?nm) emission fluorescence upon UV excitation, such that SP appears as a tiny population on the lower left-hand side of a red ( )-blue ( ) flow cytometry scattergram. This differential blue-red emission allows clear identification of a cell population that locates sideways from the diagonal and was thus named “side” population. Recent studies have shown the presence of SP cells in many types of cancer including ovarian cancer, glioblastoma cancer, lung cancer, nasopharyngeal cancer, gastrointestinal cancers hepatocellular carcinoma, mesenchymal tumors, and multiple myeloma [3–11]. SP cells in these types of cancer showed significantly higher potential to initiate tumor in NOD/SCID mice than their non-SP counterparts. They are also more likely to be resistant to certain anticancer drugs than non-SP cells. These results raised the significance of SP,

References

[1]  M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, “Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1797–1806, 1996.
[2]  M. A. Goodell, M. Rosenzweig, H. Kim et al., “Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species,” Nature Medicine, vol. 3, no. 12, pp. 1337–1345, 1997.
[3]  L. Moserle, S. Indraccolo, M. Ghisi et al., “The side population of ovarian cancer cells is a primary target of IFN-α antitumor effects,” Cancer Research, vol. 68, no. 14, pp. 5658–5668, 2008.
[4]  T. Kondo, T. Setoguchi, and T. Taga, “Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 781–786, 2004.
[5]  M. M. Ho, A. V. Ng, S. Lam, and J. Y. Hung, “Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4827–4833, 2007.
[6]  J. Wang, L. P. Guo, L. Z. Chen, Y. X. Zeng, and H. L. Shih, “Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line,” Cancer Research, vol. 67, no. 8, pp. 3716–3724, 2007.
[7]  N. Haraguchi, T. Utsunomiya, H. Inoue et al., “Characterization of a side population of cancer cells from human gastrointestinal system,” Stem Cells, vol. 24, no. 3, pp. 506–513, 2006.
[8]  T. Chiba, S. Miyagi, A. Saraya et al., “The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma,” Cancer Research, vol. 68, no. 19, pp. 7742–7749, 2008.
[9]  C. Wu, Q. Wei, V. Utomo et al., “Side population cells isolated from mesenchymal neoplasms have tumor initiating potential,” Cancer Research, vol. 67, no. 17, pp. 8216–8222, 2007.
[10]  Y. S. Loh, S. Mo, R. D. Brown et al., “Presence of Hoechst low side populations in multiple myeloma,” Leukemia and Lymphoma, vol. 49, no. 9, pp. 1813–1816, 2008.
[11]  L. Q. Yin, P. Castagnino, and R. K. Assoian, “ABCG2 expression and side population abundance regulated by a transforming growth factor β-directed epithelial-mesenchymal transition,” Cancer Research, vol. 68, no. 3, pp. 800–807, 2008.
[12]  I. Sales-Pardo, A. Avenda?o, V. Martinez-Mu?oz et al., “Flow cytometry of the side population: tips and tricks,” Cellular Oncology, vol. 28, no. 1-2, pp. 37–53, 2006.
[13]  Y. Morita, H. Ema, S. Yamazaki, and H. Nakauch, “Non-side-population hematopoietic stem cells in mouse bone marrow,” Blood, vol. 108, no. 8, pp. 2850–2856, 2006.
[14]  F. Montanaro, K. Liadaki, J. Schienda, A. Flint, E. Gussoni, and L. M. Kunkel, “Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters,” Experimental Cell Research, vol. 298, no. 1, pp. 144–154, 2004.
[15]  S. F. Ibrahim, A. H. Diercks, T. W. Petersen, and G. van den Engh, “Kinetic analyses as a critical parameter in defining the side population (SP) phenotype,” Experimental Cell Research, vol. 313, no. 9, pp. 1921–1926, 2007.
[16]  E. Boye and K. Nordstr?m, “Coupling the cell cycle to cell growth. A look at the parameters that regulate cell-cycle events,” EMBO Reports, vol. 4, no. 8, pp. 757–760, 2003.
[17]  M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005.
[18]  M. Kim, H. Turnquist, J. Jackson et al., “The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells,” Clinical Cancer Research, vol. 8, no. 1, pp. 22–28, 2002.
[19]  J. W. Jonker, J. Freeman, E. Bolscher et al., “Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice,” Stem Cells, vol. 23, no. 8, pp. 1059–1065, 2005.
[20]  P. P. Szotek, R. Pieretti-Vanmarcke, P. T. Masiakos et al., “Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11154–11159, 2006.
[21]  C. Schmidt, “Drug makers chase cancer stem cells,” Nature Biotechnology, vol. 26, no. 4, pp. 366–367, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133