全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An In Vitro Study of Differentiation of Hematopoietic Cells to Endothelial Cells

DOI: 10.1155/2011/846096

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bone-marrow-derived endothelial progenitor cells (BM-EPCs) contribute to postnatal neovascularization and therefore are of great interest for cell therapies to treat ischemic diseases. However, their origin and characteristics are still in controversy. In this paper, we identified the origin/lineage of the BM-EPCs that were isolated from bone marrow mononuclear cells and differentiated with the induction of bone-marrow endothelial-cellconditioned medium (ECCM). BM-EPCs were characterized in terms of phenotype, lineage potential, and their functional properties. Endothelial cell colonies derived from BM-EPC were cultured with ECCM for 3 months. Cultured EPC colony cells expressed endothelial cell markers and formed the capillary-like network in vitro. EPC colony cells expressed differential proliferative capacity; some of the colonies exhibited a high proliferative potential (HPP) capacity up to 20 population doublings. More importantly, these HPP-EPCs expressed hematopoietic marker CD45, exhibited endocytic activities, and preserved some of the myeloid cell activity. In addition, the HPP-EPCs secrete various growth factors including VEGF and GM-CSF into the culture medium. The results demonstrate that these EPCs were primarily derived from hematopoietic origin of early precursor cells and maintained high proliferative potential capacity, a feature with a significant potential in the application of cell therapy in ischemic diseases. 1. Introduction Bone marrow mononuclear cells (BMMNCs) contain endothelial progenitor cells (EPCs) valuable in cell therapy to enhance postischemic neovascularization. It has been shown that BMMNCs, which can be easily prepared from bone marrow extraction, have dramatic effects in the formation of neovascularization in ischemic diseases or tumor model [1–4]. In spite of extensive studies on EPC [3, 5–7], it is still quite challenging to induce all the potential EPCs from BMMNC or bone marrow into functional EPC due to the following reasons: (1) hierarchy of hematopoietic progenitors in bone marrow; (2) EPCs exist as a distinct cell type residing in the bone marrow stroma; (3) imperfect induction conditions in vitro. Extensive literature clearly documented the presence of EPCs in the bone marrow; it is important to elucidate the origin of the BM-EPC and continuously to improve strategies for isolating and characterizing the valuable EPC from BMMNC, thereby ultimately utilizing these EPCs for therapeutic purposes in ischemic and tumor diseases. We have established and characterized a BMEC line in our lab [8]. BMEC-CM derived

References

[1]  T. Asahara, H. Masuda, T. Takahashi et al., “Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization,” Circulation Research, vol. 85, no. 3, pp. 221–228, 1999.
[2]  E. E. Sharpe, A. A. Teleron, B. Li et al., “The origin and in vivo significance of murine and human culture-expanded endothelial progenitor cells,” American Journal of Pathology, vol. 168, no. 5, pp. 1710–1721, 2006.
[3]  P. P. Young, D. E. Vaughan, and A. K. Hatzopoulos, “Biologic properties of endothelial progenitor cells and their potential for cell therapy,” Progress in Cardiovascular Diseases, vol. 49, no. 6, pp. 421–429, 2007.
[4]  C. H. Yoon, M. Koyanagi, K. Iekushi et al., “Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment,” Circulation, vol. 121, no. 18, pp. 2001–2011, 2010.
[5]  R. K. Jain and D. G. Duda, “Role of bone marrow-derived cells in tumor angiogenesis and treatment,” Cancer Cell, vol. 3, no. 6, pp. 515–516, 2003.
[6]  C. J. M. Loomans, H. Wan, R. De Crom et al., “Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1760–1767, 2006.
[7]  Y. P. R. Jarajapu and M. B. Grant, “The promise of cell-based therapies for diabetic complications challenges and solutions,” Circulation Research, vol. 106, no. 5, pp. 854–869, 2010.
[8]  Q. R. Wang, Y. Yan, B. H. Wang, W. M. Li, and N. S. Wolf, “Long-term culture of murine bone-marrow-derived endothelial cells,” In Vitro, vol. 34, no. 6, pp. 443–446, 1998.
[9]  W. M. Li, W. Q. Huang, Y. H. Huang, Z. De Jiang, and Q. R. Wang, “Positive and negative haematopoietic cytokines produced by bone marrow endothelial cells,” Cytokine, vol. 12, no. 7, pp. 1017–1023, 2000.
[10]  J. H. Wang, L. M. Cheng, and L. X. Ma, “Effects of murine bone marrow endothelial cells on the in vitro expansion of human cord blood hematopoietic progenitor cells,” Journal of Central South University, vol. 29, no. 2, pp. 135–138, 2004.
[11]  Y. H. Huang and Wang Q. R., “Stimulation of bone marrow stromal cells conditioned medium on the expansion of mature megakaryocytes and colony forming unit-megakaryocyte in vitro,” Acta Physiologica Sinica, vol. 57, pp. 247–253, 2005.
[12]  Q. R. Wang, Wang B. H., Huang Y. H., G. Dai, W. M. Li, and Q. Yan, “Purification and growth of endothelial progenitor cells from bone marrow mononuclear cells,” Journal of Cellular Biochemistry, vol. 103, pp. 21–29, 2008.
[13]  X. Y. Zhou, Q. R. Wang, Y. H. Huang, L. M. Cheng, and M. Q. Tan, “. Promoting effects of serum-free murine bone marrow endothelial cell conditioned medium on the growth of bone marrow endothelial cells,” Acta Physiologica Sinica, vol. 57, pp. 199–204, 2005.
[14]  A. C. Zovein and M. L. Iruela-Arispe, “My O'Myeloid, a tale of two lineages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 12959–12960, 2006.
[15]  J. Oswald, S. Boxberger, B. J?rgensen et al., “Mesenchymal stem cells can be differentiated into endothelial cells in vitro,” Stem Cells, vol. 22, no. 3, pp. 377–384, 2004.
[16]  P. Romagnani, F. Annunziato, F. Liotta et al., “CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors,” Circulation Research, vol. 97, no. 4, pp. 314–322, 2005.
[17]  P. Daniel and T. M. Dexter, “The role of growth factors in haemopoietic development: clinical and biological implications,” Cancer and Metasatsis Review, vol. 8, no. 3, pp. 253–262, 1989.
[18]  D. A. Ingram, L. E. Mead, D. B. Moore, W. Woodard, A. Fenoglio, and M. C. Yoder, “Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells,” Blood, vol. 105, no. 7, pp. 2783–2786, 2005.
[19]  K. Choi, M. Kennedy, A. Kazarov, J. C. Papadimitriou, and G. Keller, “A common precursor for hematopoietic and endothelial cells,” Development, vol. 125, no. 4, pp. 725–732, 1998.
[20]  E. Pelosi, M. Valtieri, S. Coppola et al., “Identification of the hemangioblast in postnatal life,” Blood, vol. 100, no. 9, pp. 3203–3208, 2002.
[21]  J. P. Shaw, R. Basch, and P. Shamamian, “Hematopoietic stem cells and endothelial cell precursors express Tie-2, CD31 and CD45,” Blood Cells, Molecules, and Diseases, vol. 32, no. 1, pp. 168–175, 2004.
[22]  L. Wang, “Endothelial and hematopoietic cell fate of human embryonic stem cells,” Trends in Cardiovascular Medicine, vol. 16, no. 3, pp. 89–94, 2006.
[23]  A. S. Bailey, S. Jiang, M. Afentoulis et al., “Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells,” Blood, vol. 103, no. 1, pp. 13–19, 2004.
[24]  A. S. Bailey, H. Willenbring, S. Jiang et al., “Myeloid lineage progenitors give rise to vascular endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13156–13161, 2006.
[25]  R. Ria, C. Piccoli, T. Cirulli et al., “Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma,” Clinical Cancer Research, vol. 14, no. 6, pp. 1678–1685, 2008.
[26]  H. Chao and K. K. Hirschi, “Hemato-vascular origins of endothelial progenitor cells?” Microvascular Research, vol. 79, no. 3, pp. 169–173, 2010.
[27]  D. A. Ingram, L. E. Mead, H. Tanaka et al., “Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood,” Blood, vol. 104, no. 9, pp. 2752–2760, 2004.
[28]  J. R. Conejo-Garcia, F. Benencia, M. C. Courreges et al., “Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A,” Nature Medicine, vol. 10, no. 9, pp. 950–958, 2004.
[29]  B. G. Sharifi, Z. Zeng, L. Wang et al., “Pleiotrophin induces transdifferentiation of monocytes into functional endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 6, pp. 1273–1280, 2006.
[30]  B. Li, A. Vincent, J. Cates, D. M. Brantley-Sieders, D. B. Polk, and P. P. Young, “Low levels of tumor necrosis factor α increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site,” Cancer Research, vol. 69, no. 1, pp. 338–348, 2009.
[31]  G. J. Madlambayan, J. M. Butler, K. Hosaka et al., “Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger,” Blood, vol. 114, no. 19, pp. 4310–4319, 2009.
[32]  E. Elsheikh, M. Uzunel, Z. He, J. Holgersson, G. Nowak, and S. Sumitran-Holgersson, “Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity,” Blood, vol. 106, no. 7, pp. 2347–2355, 2005.
[33]  R. G. Turan, I. Bozdag-Turan, J. Ortak et al., “Improved mobilization of the CD34+ and CD133+ bone marrow-derived circulating progenitor cells by freshly isolated intracoronary bone marrow cell transplantation in patients with ischemic heart disease,” Stem Cells and Development, vol. 20, no. 9, pp. 1491–1501, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133