AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors) has increased treatment options. Autologous stem cell transplant (ASCT) has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed. 1. Introduction Amyloidosis is a disease of protein misfolding in which the involved protein acquires an abnormal beta-pleated sheet configuration rather than the native alpha helical state [1]. The amyloid protein is insoluble, and its deposition in various tissues causes tissue damage and organ dysfunction. Amyloidosis can be of various types based on the precursor protein involved in amyloid formation. More than 20 different human fibrillar amyloid proteins have been described [2], and accurate identification of the type is crucial to treatment planning. It is also important to distinguish localized from systemic amyloidosis since patients presenting with localized amyloidosis generally do not need systemic treatment. The most common type of systemic amyloidosis (primary amyloidosis or AL amyloidosis) is caused by production of immunoglobulin light chain or light chain fragment secondary to an underlying plasma cell dyscrasia. Other systemic amyloidoses (secondary amyloidoses) include AA amyloid (caused as a result of chronic inflammatory disease), ATTR caused by alteration in transthyretin (TTR) protein because of one of several mutations (familial amyloid) or misfolding of wild-type transthyretin protein (senile amyloidosis), and dialysis-related amyloidosis (deposition of beta 2 microglobulin). Primary amyloidosis is the only type of systemic amyloidosis that responds to cytotoxic chemotherapy directed against the abnormal plasma cell clone, the source of amyloidogenic light chains. Other treatment strategies to prevent amyloid formation by altering the equilibrium between soluble precursor and
References
[1]
R. H. Falk, R. L. Comenzo, and M. Skinner, “The systemic amyloidoses,” New England Journal of Medicine, vol. 337, no. 13, pp. 898–909, 1997.
[2]
J. D. Sipe, M. D. Benson, J. N. Buxbaum et al., “Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis,” Amyloid, vol. 17, no. 3-4, pp. 101–104, 2010.
[3]
K. Bodin, S. Ellmerich, M. C. Kahan et al., “Antibodies to human serum amyloid P component eliminate visceral amyloid deposits,” Nature, vol. 468, no. 7320, pp. 93–97, 2010.
[4]
J. S. Wall, S. J. Kennel, A. C. Stuckey et al., “Radioimmunodetection of amyloid deposits in patients with AL amyloidosis,” Blood, vol. 116, no. 13, pp. 2241–2244, 2010.
[5]
L. M. Dember, P. N. Hawkins, B. P. C. Hazenberg et al., “Eprodisate for the treatment of renal disease in AA amyloidosis,” New England Journal of Medicine, vol. 356, no. 23, pp. 2349–2360, 2007.
[6]
M. Skinner, J. J. Anderson, R. Simms et al., “Treatment of 100 patients with primary amyloidosis: a randomized trial of melphalan, prednisone, and colchicine versus colchicine only,” American Journal of Medicine, vol. 100, no. 3, pp. 290–298, 1996.
[7]
R. A. Kyle, M. A. Gertz, P. R. Greipp et al., “A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, melphalan, prednisone, and colchicine,” New England Journal of Medicine, vol. 336, no. 17, pp. 1202–1207, 1997.
[8]
G. Palladini, V. Perfetti, L. Obici et al., “Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation,” Blood, vol. 103, no. 8, pp. 2936–2938, 2004.
[9]
G. Palladini, P. Russo, M. Nuvolone et al., “Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis,” Blood, vol. 110, no. 2, pp. 787–788, 2007.
[10]
S. Dietrich, S. O. Sch?nland, A. Benner et al., “Treatment with intravenous melphalan and dexamethasone is not able to overcome the poor prognosis of patients with newly diagnosed systemic light chain amyloidosis and severe cardiac involvement,” Blood, vol. 116, no. 4, pp. 522–528, 2010.
[11]
D. Lebovic, J. Hoffman, B. M. Levine et al., “Predictors of survival in patients with systemic light-chain amyloidosis and cardiac involvement initially ineligible for stem cell transplantation and treated with oral melphalan and dexamethasone,” British Journal of Haematology, vol. 143, no. 3, pp. 369–373, 2008.
[12]
H. J. Lachmann, R. Gallimore, J. D. Gillmore et al., “Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy,” British Journal of Haematology, vol. 122, no. 1, pp. 78–84, 2003.
[13]
S. K. Kumar, S. V. Rajkumar, A. Dispenzieri et al., “Improved survival in multiple myeloma and the impact of novel therapies,” Blood, vol. 111, no. 5, pp. 2516–2520, 2008.
[14]
E. Kastritis, A. Anagnostopoulos, M. Roussou et al., “Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone,” Haematologica, vol. 92, no. 10, pp. 1351–1358, 2007.
[15]
D. E. Reece, V. Sanchorawala, U. Hegenbart et al., “Weekly and twice-weekly bortezomib in patients with systemic AL amyloidosis: results of a phase 1 dose-escalation study,” Blood, vol. 114, no. 8, pp. 1489–1497, 2009.
[16]
A. D. Wechalekar, H. J. Lachmann, M. Offer, P. N. Hawkins, and J. D. Gillmore, “Efficacy of bortezomib in systemic AL amyloidosis with relapsed/refractory clonal disease,” Haematologica, vol. 93, no. 2, pp. 295–298, 2008.
[17]
P. Moreau, V. Leblond, P. Bourquelot et al., “Prognostic factors for survival and response after high-dose therapy and autologous stem cell transplantation in systemic AL amyloidosis: a report on 21 patients,” British Journal of Haematology, vol. 101, no. 4, pp. 766–769, 1998.
[18]
R. L. Comenzo, E. Vosburgh, R. H. Falk et al., “Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients,” Blood, vol. 91, no. 10, pp. 3662–3670, 1998.
[19]
M. A. Gertz, M. Q. Lacy, D. A. Gastineau et al., “Blood stem cell transplantation as therapy for primary systemic amyloidosis (AL),” Bone Marrow Transplantation, vol. 26, no. 9, pp. 963–969, 2000.
[20]
M. T. Cibeira, V. Sanchorawala, D. C. Seldin, et al., “Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421 patients,” Blood, vol. 118, pp. 4346–4352, 2011.
[21]
M. A. Gertz, M. Q. Lacy, A. Dispenzieri et al., “Trends in day 100 and 2-year survival after auto-SCT for AL amyloidosis: outcomes before and after 2006,” Bone Marrow Transplantation, vol. 46, no. 7, pp. 970–975, 2011.
[22]
M. A. Gertz, M. Q. Lacy, A. Dispenzieri et al., “Stem cell transplantation for the management of primary systemic amyloidosis,” American Journal of Medicine, vol. 113, no. 7, pp. 549–555, 2002.
[23]
A. Dispenzieri, M. A. Gertz, R. A. Kyle et al., “Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation,” Blood, vol. 104, no. 6, pp. 1881–1887, 2004.
[24]
S. Kumar, A. Dispenzieri, J. A. Katzmann et al., “Serum immunoglobulin free light-chain measurement in primary amyloidosis: prognostic value and correlations with clinical features,” Blood, vol. 116, no. 24, pp. 5126–5129, 2010.
[25]
S. Kumar, A. Dispenzieri, M. Q. Lacy et al., “Serum uric acid: novel prognostic factor in primary systemic amyloidosis,” Mayo Clinic Proceedings, vol. 83, no. 3, pp. 297–303, 2008.
[26]
G. Palladini, C. Campana, C. Klersy et al., “Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis,” Circulation, vol. 107, no. 19, pp. 2440–2445, 2003.
[27]
N. Leung, T. R. Leung, S. S. Cha, A. Dispenzieri, M. Q. Lacy, and M. A. Gertz, “Excessive fluid accumulation during stem cell mobilization: a novel prognostic factor of first-year survival after stem cell transplantation in AL amyloidosis patients,” Blood, vol. 106, no. 10, pp. 3353–3357, 2005.
[28]
D. C. Seldin, J. J. Anderson, M. Skinner et al., “Successful treatment of AL amyloidosis with high-dose melphalan and autologous stem cell transplantation in patients over age 65,” Blood, vol. 108, no. 12, pp. 3945–3947, 2006.
[29]
M. A. Gertz, M. Q. Lacy, A. Dispenzieri et al., “Risk-adjusted manipulation of melphalan dose before stem cell transplantation in patients with amyloidosis is associated with a lower response rate,” Bone Marrow Transplantation, vol. 34, no. 12, pp. 1025–1031, 2004.
[30]
M. A. Gertz, M. Q. Lacy, A. Dispenzieri et al., “Autologous stem cell transplant for immunoglobulin light chain amyloidosis: a status report,” Leukemia and Lymphoma, vol. 51, no. 12, pp. 2181–2187, 2010.
[31]
D. H. Vesole, W. S. Pérez, M. Akasheh, C. Boudreau, D. E. Reece, and C. N. Bredeson, “High-dose therapy and autologous hematopoietic stem cell transplantation for patients with primary systemic amyloidosis: a Center for International Blood and Marrow Transplant Research study,” Mayo Clinic Proceedings, vol. 81, no. 7, pp. 880–888, 2006.
[32]
N. Leung, A. Dispenzieri, F. C. Fervenza et al., “Renal response after high-dose melphalan and stem cell transplantation is a favorable marker in patients with primary systemic amyloidosis,” American Journal of Kidney Diseases, vol. 46, no. 2, pp. 270–277, 2005.
[33]
M. Skinner, V. Sanchorawala, D. C. Seldin et al., “High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study,” Annals of Internal Medicine, vol. 140, no. 2, pp. 85–93, 2004.
[34]
S. Madan, S. K. Kumar, A. Dispenzieri, et al., “High-dose melphalan and peripheral blood stem cell transplantation for light-chain amyloidosis with cardiac involvement,” Blood, vol. 46, no. 5, pp. 1117–1122.
[35]
I. I. Van Gameren, M. H. Van Rijswijk, J. Bijzet, E. Vellenga, and B. P. Hazenberg, “Histological regression of amyloid in AL amyloidosis is exclusively seen after normalization of serum free light chain,” Haematologica, vol. 94, no. 8, pp. 1094–1100, 2009.
[36]
A. Dispenzieri, M. Q. Lacy, R. A. Kyle et al., “Eligibility for hematopoietic stem-cell transplantation for primary systemic amyloidosis is a favorable prognostic factor for survival,” Journal of Clinical Oncology, vol. 19, no. 14, pp. 3350–3356, 2001.
[37]
A. Dispenzieri, R. A. Kyle, M. Q. Lacy et al., “Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study,” Blood, vol. 103, no. 10, pp. 3960–3963, 2004.
[38]
D. C. Seldin, J. J. Anderson, V. Sanchorawala et al., “Improvement in quality of life of patients with AL amyloidosis treated with high-dose melphalan and autologous stem cell transplantation,” Blood, vol. 104, no. 6, pp. 1888–1893, 2004.
[39]
A. Jaccard, P. Moreau, V. Leblond et al., “High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis,” New England Journal of Medicine, vol. 357, no. 11, pp. 1083–1093, 2007.
[40]
S. Kumar, A. Dispenzieri, and M. A. Gertz, “High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis,” New England Journal of Medicine, vol. 358, no. 1, p. 91, 2008.
[41]
J. Mehta, “High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis,” New England Journal of Medicine, vol. 358, no. 1, p. 91, 2008.
[42]
R. L. Comenzo, R. M. Steingart, and A. D. Cohen, “High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis,” New England Journal of Medicine, vol. 358, no. 1, p. 92, 2008.
[43]
R. Mhaskar, A. Kumar, M. Behera, M. A. Kharfan-Dabaja, and B. Djulbegovic, “Role of high-dose chemotherapy and autologous hematopoietic cell transplantation in primary systemic amyloidosis: a systematic review,” Biology of Blood and Marrow Transplantation, vol. 15, no. 8, pp. 893–902, 2009.
[44]
E. Kastritis, A. D. Wechalekar, M. A. Dimopoulos et al., “Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1031–1037, 2010.
[45]
C. Gasparetto, V. Sanchorawala, R. M. Snyder, et al., “Use of melphalan (M)/dexamethasone (D)/bortezomib in AL amyloidosis,” Journal of Clinical Oncology, vol. 28, abstract 8024, 2010.
[46]
V. Jimenez-Zepeda, C. B. Reeder, J. R. Mikhael, et al., “Cyclophosphamide, bortezomib and dexamethasone (CyBORD) induces rapid and complete responses in patients with amyloidosis not eligible for peripheral blood stem cell transplant,” Blood, vol. 114, abstract 1857, 2010.
[47]
M. W. Brunvand and M. Bitter, “Amyloidosis relapsing after autologous stem cell transplantation treated with bortezomib: normalization of detectable serum-free light chains and reversal of tissue damage with improved suitability for transplant,” Haematologica, vol. 95, no. 3, pp. 519–521, 2010.
[48]
Mayo Consensus on AL Amyloidosis: Diagnosis and Treatment, 2011, http://www.msmart.org/msmart_mar09_002.htm.