In transplantation of hematopoietic stem cells (HSCs) from unrelated donors a high HLA compatibility level decreases the risk of acute graft-versus-host disease and mortality. The diversity of the HLA system at the allelic and haplotypic level and the heterogeneity of HLA typing data of the registered donors render the search process a complex task. This paper summarizes our experience with a search algorithm that includes at the start of the search a probability estimate (high/intermediate/low) to identify a HLA-A, B, C, DRB1, DQB1-compatible donor (a 10/10 match). Based on 2002–2011 searches about 30% of patients have a high, 30% an intermediate, and 40% a low probability search. Search success rate and duration are presented and discussed in light of the experience of other centers. Overall a 9-10/10 matched HSC donor can now be identified for 60–80% of patients of European descent. For high probability searches donors can be selected on the basis of DPB1-matching with an estimated success rate of >40%. For low probability searches there is no consensus on which HLA incompatibilities are more permissive, although HLA-DQB1 mismatches are generally considered as acceptable. Models for the discrimination of more detrimental mismatches based on specific amino acid residues rather than specific HLA alleles are presented. 1. Introduction An increasing number of transplantations are now performed with hematopoietic stem cells (HSC) from unrelated volunteer donors. This trend has been largely facilitated by the impressive growth of volunteer donor registries in the last decade: 8 million donors in 2002 and more than 20 million in 2012. The implementation of recipient and donor HLA high resolution genotyping in the clinical practice has clearly contributed to improve the success of transplantation through a better matching [1, 2]. On the other hand the polymorphism of HLA genes turns out to be much higher than anticipated, resulting in larger difficulties in identifying a perfectly matched donor. Because most donors in the Bone Marrow Donor Worldwide (BMDW) registry are of European descent, searches for patients of other ethnic backgrounds have a lower success rate, particularly for those patients with a mixed origin. HLA matching is commonly based on exons 2 and 3 polymorphism for class I loci and on exon 2 polymorphism for class II loci. The nature of HLA polymorphism with reshuffling of gene segments coding for just a few amino acids has rendered HLA typing a challenging task. The HLA typing techniques currently used in the clinical laboratories often lead
References
[1]
E. W. Petersdorf, “Optimal HLA matching in hematopoietic cell transplantation,” Current Opinion in Immunology, vol. 20, no. 5, pp. 588–593, 2008.
[2]
B. E. Shaw, R. Arguello, C. A. Garcia-Sepulveda, and J. A. Madrigal, “The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation: review,” British Journal of Haematology, vol. 150, no. 3, pp. 251–258, 2010.
[3]
S. J. Lee, J. Klein, M. Haagenson et al., “High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation,” Blood, vol. 110, no. 13, pp. 4576–4583, 2007.
[4]
K. Fleischhauer, B. E. Shaw, T. Gooley, M. Malkki, P. Bardy, and J. D. Bignon, “Effect of T-cell epitope matching at HLA-DPB1 in recipients of unrelated-donor haematopoietic-cell-transplantation : a retrospective study,” Lancet Oncology, vol. 13, pp. 366–374, 2012.
[5]
F. Bettens, J. Passweg, U. Schanz, Y. Chalandon, D. Heim, and T. Güng?r, “Impact of HLA-DPB1 haplotypes on outcome of 10/10 matched unrelated hematopoietic stem cell donor transplantation depends on MHC-linked microsatellite polymorphisms,” Biology of Blood and Marrow Transplantation, vol. 18, pp. 608–616, 2012.
[6]
J. M. Tiercy, G. Nicoloso, J. Passweg et al., “The probability of identifying a 10/10 HLA allele-matched unrelated donor is highly predictable,” Bone Marrow Transplantation, vol. 40, no. 6, pp. 515–522, 2007.
[7]
M. Maiers, L. Gragert, and W. Klitz, “High-resolution HLA alleles and haplotypes in the United States population,” Human Immunology, vol. 68, no. 9, pp. 779–788, 2007.
[8]
H. P. Eberhard, U. Feldmann, W. Bochtler et al., “Estimating unbiased haplotype frequencies from stem cell donor samples typed at heterogeneous resolutions: a practical study based on over 1 million German donors,” Tissue Antigens, vol. 76, no. 5, pp. 352–361, 2010.
[9]
A. H. Schmidt, U. V. Solloch, D. Baier et al., “Regional differences in HLA antigen and haplotype frequency distributions in Germany and their relevance to the optimization of hematopoietic stem cell donor recruitment,” Tissue Antigens, vol. 76, no. 5, pp. 362–379, 2010.
[10]
A. Balas, F. García-Sánchez, and J. L. Vicario, “Allelic and haplotypic HLA frequency distribution in Spanish hematopoietic patients. Implications for unrelated donor searching,” Tissue Antigens, vol. 77, no. 1, pp. 45–53, 2011.
[11]
B. Pédron, V. Guérin-El Khourouj, J. H. Dalle et al., “Contribution of HLA-A/B/C/DRB1/DQB1 common haplotypes to donor search outcome in unrelated hematopoietic stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 17, pp. 1612–1618, 2011.
[12]
S. Buhler, J. M. Nunes, G. Nicoloso, J. Tiercy -M, and A. Sanchez-Mazas, “the heterogeneous genetic makeup of the Swiss population,” Plos ONE, vol. 7, Article ID e41400, 2012.
[13]
K. Hirv, K. Bloch, M. Fischer, B. Einsiedler, H. Schrezenmeier, and J. Mytilineos, “Prediction of duration and success rate of unrelated hematopoietic stem cell donor searches based on the patient's HLA-DRB1 allele and DRB1-DQB1 haplotype frequencies,” Bone Marrow Transplantation, vol. 44, no. 7, pp. 433–440, 2009.
[14]
B. Kervaire, A. H. Schmidt, J. Villard, and J. M. Tiercy, “Sequence of a novel HLA-A2 allele in a haematopoietic stem cell donor of the international registry,” Tissue Antigens, vol. 74, no. 3, pp. 248–249, 2009.
[15]
F. Bettens, G. Nicoloso De Faveri, and J. M. Tiercy, “HLA-B51 and haplotypic diversity of B-Cw associations: implications for matching in unrelated hematopoietic stem cell transplantation,” Tissue Antigens, vol. 73, no. 4, pp. 316–325, 2009.
[16]
M. B. A. Heemskerk, S. M. van Walraven, J. J. Cornelissen et al., “How to improve the search for an unrelated haematopoietic stem cell donor. Faster is better than more!,” Bone Marrow Transplantation, vol. 35, no. 7, pp. 645–652, 2005.
[17]
S. Querol, G. J. Mufti, S. G. E. Marsh et al., “Cord blood stem cells for hematopoietic stem cell transplantation in the uk:how big should the bank be?” Haematologica, vol. 94, no. 4, pp. 536–541, 2009.
[18]
A. Rosenmayr, M. Pointner-Prager, M. Winkler, A. Mitterschiffhaler, B. Pelzmann, and L. Bozic, “The austrian bone marrow donor registry: providing patients in Austria with unrelated donors for transplant—a worldwide cooperation,” Transfusion Medicine and Hemotherapy, vol. 38, pp. 292–299, 2012.
[19]
J. Dehn, M. Arora, S. Spellman et al., “Unrelated donor hematopoietic cell transplantation: factors associated with a better HLA match,” Biology of Blood and Marrow Transplantation, vol. 14, no. 12, pp. 1334–1340, 2008.
[20]
J. Pidala, J. Kim, M. Schell, S. J. Lee, R. Hillgruber, and V. Nye, “Race/ethnicity affects the probability of finding an HLA-A, -B, -C and -DRB1 allele-matched unrelated donor and likelihood of subsequent transplant utilization,” Bone Marrow Transplantation. In press.
[21]
A. Rosenmayr, M. Pointner-Prager, A. Mitterschiffthaler et al., “What are a patient's current chances of finding a matched unrelated donor? Twenty years' central search experience in a small country,” Bone Marrow Transplantation, vol. 47, pp. 172–180, 2011.
[22]
Y. Chalandon, J. M. Tiercy, U. Schanz et al., “Impact of high-resolution matching in allogeneic unrelated donor stem cell transplantation in Switzerland,” Bone Marrow Transplantation, vol. 37, no. 10, pp. 909–916, 2006.
[23]
A. Woolfrey, J. P. Klein, M. Haagenson et al., “HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 17, no. 6, pp. 885–892, 2011.
[24]
Y. Morishima, T. Sasazuki, H. Inoko et al., “The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors,” Blood, vol. 99, no. 11, pp. 4200–4206, 2002.
[25]
E. W. Petersdorf, C. Anasetti, P. J. Martin et al., “Limits of HLA mismatching in unrelated hematopoietic cell transplantation,” Blood, vol. 104, no. 9, pp. 2976–2980, 2004.
[26]
S. Spellman, M. Eapen, B. R. Logan, C. Mueller, P. Rubinstein, and M. I. Setterholm, “A perspective on the selection of unrelated donors and cord blood units for transplantation,” Blood, vol. 120, pp. 259–265, 2012.
[27]
A. Gratwohl, M. Stern, R. Brand et al., “Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis,” Cancer, vol. 115, no. 20, pp. 4715–4726, 2009.
[28]
T. Lodewyck, M. Oudshoorn, B. van der Holt et al., “Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia,” Leukemia, vol. 25, pp. 1548–1554, 2011.
[29]
L. A. Baxter-Lowe, M. Maiers, S. R. Spellman et al., “HLA-A disparities illustrate challenges for ranking the impact of HLA mismatches on bone marrow transplant outcome in the United States,” Biology of Blood and Marrow Transplantation, vol. 15, no. 8, pp. 971–981, 2009.
[30]
E. Roosnek and J. M. Tiercy, “Search for an unrelated HLA-compatible stem cell donor,” Current Opinion in Hematology, vol. 6, no. 6, pp. 365–370, 1999.
[31]
M. Oudshoorn, I. I. N. Doxiadis, P. M. Van Den Berg-Loonen, C. E. M. Voorter, W. Verduyn, and F. H. J. Claas, “Functional versus structural matching: can the CTLp test be replaced by HLA allele typing?” Human Immunology, vol. 63, no. 3, pp. 176–184, 2002.
[32]
S. Spellman, J. Klein, M. Haagenson, M. Askar, L. A. Baxter-Lowe, and J. He, “Scoring HLA class I mismatches by HistoCheck does not predict clinical outcome in unrelated hematopoietic stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 18, pp. 739–746, 2012.
[33]
T. Kawase, Y. Morishima, K. Matsuo et al., “High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism,” Blood, vol. 110, no. 7, pp. 2235–2241, 2007.
[34]
S. R. Marino, S. Lin, M. Maiers et al., “Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor hematopoietic cell transplantation,” Bone Marrow Transplantation, vol. 47, pp. 217–226, 2012.
[35]
M. M. J?ris, J. J. van Rood, D. L. Roelen, M. Oudshoorn, and F. H. J. Claas, “A proposed algorithm predictive for cytotoxic T cell alloreactivity,” Journal of Immunology, vol. 188, pp. 1868–1873, 2012.
[36]
N. A. Mifsud, A. W. Purcell, W. Chen, R. Holdsworth, B. D. Tait, and J. McCluskey, “Immunodominance hierarchies and gender bias in direct TCD8-cell alloreactivity,” American Journal of Transplantation, vol. 8, no. 1, pp. 121–132, 2008.
[37]
S. Morishima, S. Ogawa, A. Matsubara et al., “Impact of highly conserved HLA haplotype on acute graft-versus-host disease,” Blood, vol. 115, no. 23, pp. 4664–4670, 2010.
[38]
E. W. Petersdorf, M. Malkki, T. A. Gooley, S. R. Spellman, M. D. Haagenson, and M. M. Horowitz, “MHC-resident variation affects risks after unrelated donor hematopoietic cell transplantation,” Science Translational Medicine, vol. 4, Article ID 144ra101, 2012.