全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Advances in the Genetic Transformation of Coffee

DOI: 10.1155/2012/580857

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coffee is one of the most important plantation crops, grown in about 80 countries across the world. The genus Coffea comprises approximately 100 species of which only two species, that is, Coffea arabica (commonly known as arabica coffee) and Coffea canephora (known as robusta coffee), are commercially cultivated. Genetic improvement of coffee through traditional breeding is slow due to the perennial nature of the plant. Genetic transformation has tremendous potential in developing improved coffee varieties with desired agronomic traits, which are otherwise difficult to achieve through traditional breeding. During the last twenty years, significant progress has been made in coffee biotechnology, particularly in the area of transgenic technology. This paper provides a detailed account of the advances made in the genetic transformation of coffee and their potential applications. 1. Introduction Coffee is one of the most important agricultural commodities, ranking second in international trade after crude oil. The total global production of green coffee is above 134.16 million bags (60?kg capacity) with a retail sales value in excess of $22.7 billion during 2010-11 in the world market [1]. Coffee is grown in about 10.2 million hectares land spanning over 80 countries in the tropical and subtropical regions of the world especially in Africa, Asia, and Latin America. The economics of many coffee growing countries depends heavily on the earnings from this crop. More than 100 million people in the coffee growing areas worldwide derive their income directly or indirectly from the produce of this crop. Coffee trees belong to the genus Coffea in the family Rubiaceae. The genus Coffea L. comprises more than 100 species [2], of which only two species, that is, C. arabica (arabica coffee) and C. canephora (robusta coffee), are commercially cultivated. Another coffee species, Coffea liberica is also cultivated in a small scale to satisfy local consumption. Almost all the coffee species are diploid ( 2 n = 2 x = 2 2 ) and generally self-incompatible except C. arabica which is a natural allotetraploid ( 2 n = 4 x = 4 4 ) self-fertile species [3]. In the consumer market, C. arabica is preferred for its beverage quality, aromatic characteristics, and low-caffeine content compared to robusta, which is characterized by a stronger bitterness, and higher-caffeine content. Arabica contributes towards 65% of global coffee production [4]. C. arabica is mainly native to the highlands of Southwestern Ethiopia with additional populations in South Sudan (Boma Plateau) and North

References

[1]  ICO. International Coffee Organization, “ICO Annual Review 2010,” 2010, http://www.ico.org/.
[2]  A. P. Davis, R. Govaerts, D. M. Bridson, and P. Stoffelen, “An annotated taxonomic conspectus of the genus Coffea (Rubiaceae),” Botanical Journal of the Linnean Society, vol. 152, no. 4, pp. 465–512, 2006.
[3]  A. Charrier and J. Berthaud, “Botanical classification of coffee,” in Coffee, Botany, Biochemistry and Production of Beans and Beverage, M. N. Clifford and K. C. Wilson, Eds., pp. 13–47, Croom Helm, London, UK, 1985.
[4]  A. Lécolier, P. Besse, A. Charrier, T. N. Tchakaloff, and M. Noirot, “Unraveling the origin of Coffea arabica “Bourbon pointu” from la Réunion: a historical and scientific perspective,” Euphytica, vol. 168, no. 1, pp. 1–10, 2009.
[5]  T. W. M. Gole, T. Demel, M. Denich, and T. Bosch, “Diversity of traditional coffee production systems in Ethiopia and their contribution to conservation of genetic diversity,” in Proceedings of the International Agricultural Research for Development, Deutscher Tropentag, Bonn, Germany, 2001.
[6]  A. S. Thomas, “The wild arabica coffee on the Boma plateau of Anglo-Egyptian Sudan,” Empirical Journal of Experimental Agriculture, vol. 10, pp. 207–212, 1942.
[7]  F. Anthony, J. Berthaud, J. L. Guillaumet, and M. Lourd, “Collecting wild coffee species in Kenya and Tanzania,” Plant Genetic Resources Newsletter, vol. 69, pp. 23–29, 1987.
[8]  E. W. Githae, M. Chuah-Petiot, J. K. Mworia, and D. W. Odee, “A botanical inventory and diversity assessment of Mt. Marsabit forest, a sub-humid montane forest in the arid lands of Northern Kenya,” African Journal of Ecology, vol. 46, no. 1, pp. 39–45, 2008.
[9]  M. F. Carneiro, “Coffee biotechnology and its application in genetic transformation,” Euphytica, vol. 96, no. 1, pp. 167–172, 1997.
[10]  H. A. M. van der Vossen, “Coffee selection and breeding,” in Coffee: Botany, Biochemistry and Production of Beans and Beverage, M. N. Clifford and K. C. Wilson, Eds., pp. 48–96, Croom Helm, London, UK, 1985.
[11]  K. H. Srinivasan and R. L. Narasimhaswamy, “A review of coffee breeding work done at the Government coffee experiment station, Balehonnur,” Indian Coffee, vol. 34, pp. 311–321, 1975.
[12]  O. Guerreiro Filho, M. B. Silvarolla, and A. B. Eskes, “Expression and mode of inheritance of resistance in coffee to leaf miner Perileucoptera coffeella,” Euphytica, vol. 105, no. 1, pp. 7–15, 1999.
[13]  A. Bettencourt, Considera??es gerais sobre o ‘Híbrido de Timor’, Instituto Agronomico de Campinas. Circular, no. 31, Instituto Agronomico de Campinas, 1973.
[14]  “Coffee Guide,” Central Coffee Research Institute, Coffee Board, Bangalore, India, 2000.
[15]  C. R. Barton, T. L. Adams, and M. A. Zarowitz, “Stable transformation of foreign DNA into Coffea arabica plants,” in Proceedings of the 14th International Conference on Coffee Science (ASIC '91), pp. 460–464, San Francisco, Calif, USA, 1991.
[16]  R. Fernandez-Da Silva and A. Menéndez-Yuffá, “Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes GUS and BAR,” Electronic Journal of Biotechnology, vol. 6, no. 1, pp. 29–35, 2003.
[17]  V. Kumar, K. V. Satyanarayana, A. Ramakrishna, A. Chandrashekar, and G. A. Ravishankar, “Evidence for localization of N-methyltransferase (MMT) of caffeine biosynthetic pathway in vacuolar surface of Coffea canephora endosperm elucidated through localization of GUS reporter gene driven by NMT promoter,” Current Science, vol. 93, no. 3, pp. 383–386, 2007.
[18]  J. van Boxtel, M. Berthouly, C. Carasco, M. Dufour, and A. Eskes, “Transient expression of beta-glucuronidase following biolistic delivery of foreign DNA into coffee tissues,” Plant Cell Reports, vol. 14, no. 12, pp. 748–752, 1995.
[19]  A. G. Rosillo, J. R. Acuna, A. L. Gaitan, and M. de Pena, “Optimised DNA delivery into Coffea arabica suspension culture cells by particle bombardment,” Plant Cell, Tissue and Organ Culture, vol. 74, no. 1, pp. 45–49, 2003.
[20]  W. G. Cunha, F. R. B. Machado, G. R. Vianna, J. B. Teixeira, and E. V. S. Albuquerque, Obtencao De Coffea Arabica Geneticamente Modificadas Por Bombardmento De Calos Embriogenecos, vol. 73 of Boletim de Pesquisa e desenvolvimento, Embrapa, Brasilia, Brazil, 2004.
[21]  A. F. Ribas, A. K. Kobayashi, L. F. P. Pereira, and L. G. E. Vieira, “Genetic transformation of Coffea canephora by particle bombardment,” Biologia Plantarum, vol. 49, no. 4, pp. 493–497, 2005.
[22]  A. M. Gatica-Arias, G. Arrieta-Espinoza, and A. M. Espinoza Esquivel, “Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L. cvs. Caturra and Catuaí,” Electronic Journal of Biotechnology, vol. 11, no. 1, pp. 1–11, 2008.
[23]  E. V. S. Albuquerque, W. G. Cunha, A. E. A. D. Barbosa et al., “Transgenic coffee fruits from Coffea arabica genetically modified by bombardment,” In Vitro Cellular & Developmental Biology—Plant, vol. 45, no. 5, pp. 532–539, 2009.
[24]  J. Spiral and V. Petiard, “Protoplast culture and regeneration in coffee species,” in Proceedings of the 14th International Conference on Coffee Science (ASIC '91), pp. 383–391, San Francisco, Calif, USA, 1991.
[25]  T. Hatanaka, Y. E. Choi, T. Kusano, and H. Sano, “Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation,” Plant Cell Reports, vol. 19, no. 2, pp. 106–110, 1999.
[26]  T. Leroy, A. M. Henry, M. Royer et al., “Genetically modified coffee plants expressing the Bacillus thuringiensiscry1Ac gene for resistance to leaf miner,” Plant Cell Reports, vol. 19, no. 4, pp. 382–389, 2000.
[27]  M. K. Mishra, H. L. Sreenath, and C. S. Srinivasan, “Agrobacterium-mediated transformation of coffee: an assessment of factors affecting gene transfer efficiency,” in Proceedings of the 15th Plantation Crops Symposium, K. Sreedharan, P. K. V. Kumar, Jayarama, and B. M. Chulaki, Eds., pp. 251–255, Mysore, India, December 2002.
[28]  S. Ogita, H. Uefuji, M. Morimoto, and H. Sano, “Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties,” Plant Molecular Biology, vol. 54, no. 6, pp. 931–941, 2004.
[29]  M. K. Mishra and H. L. Sreenath, “High-efficiency Agrobacterium-mediated transformation of coffee (Coffea canephora Pierre ex. Frohner) using hypocotyl explants,” in Proceedings of the 20th International Conference on Coffee Science (ASIC '04), pp. 792–796, Bangalore, India, October 2004.
[30]  A. R. R. Cruz, A. L. D. Paixao, F. R. Machado, et al., Obtencao de plantas transformadas de Coffea canephora por co-cultivo de calos embriogenicos com A. Tumefaciens, vol. 73 of Boletim de pesquiza e Desenvolvimento, Embrapa, Brasilia, Brazil, 2004.
[31]  R. L. R. Canche-Moo, A. Ku-Gonzalez, C. Burgeff, V. M. Loyola-Vargas, L. C. Rodríguez-Zapata, and E. Casta?o, “Genetic transformation of Coffea canephora by vacuum infiltration,” Plant Cell, Tissue and Organ Culture, vol. 84, no. 3, pp. 373–377, 2006.
[32]  V. Kumar, K. V. Sathyanarayana, S. Saarala Itty, P. Giridhar, A. Chandrasekhar, and G. A. Ravishankar, “Post transcriptional gene silencing for down regulating caffeine biosynthesis in Coffea canephora P. ex Fr,” in Proceedings of the 20th International Conference on Coffee Science (ASIC '04), pp. 769–774, Bangalore, India, 2004.
[33]  B. Perthuis, J. L. Pradon, C. Montagnon, M. Dufour, and T. Leroy, “Stable resistance against the leaf miner Leucoptera coffeella expressed by genetically transformed Coffea canephora in a pluriannual field experiment in French Guiana,” Euphytica, vol. 144, no. 3, pp. 321–329, 2005.
[34]  A. F. Ribas, R. M. Galvao, L. F. P. Pereira, and L. G. E. Vieira, “Transformacao de Coffea arabica com o gene da ACC oxidase em orientacao antinsenso,” in Proceedings of the 50th Congreso Brasileiro de Genetica, p. 492, Sao Pulo, Brazil, September 2005.
[35]  A. F. Ribas, A. K. Kobayashi, L. F. P. Pereira, and L. G. E. Vieira, “Production of herbicide-resistant coffee plants (Coffea canephora P.) via Agrobacterium tumefaciens-mediated transformation,” Brazilian Archives of Biology and Technology, vol. 49, no. 1, pp. 11–19, 2006.
[36]  A. Arroyo-Herrera, A. Ku Gonzalez, R. Canche Moo et al., “Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis,” Plant Cell, Tissue and Organ Culture, vol. 94, no. 2, pp. 171–180, 2008.
[37]  M. K. Mishra, H. L. Sreenath, Jayarama et al., “Two critical factors: Agrobacterium strain and antibiotics selection regime improve the production of transgenic coffee plants,” in Proceedings of the 22nd International Association for Coffee Science (ASIC '08), pp. 843–850, Campinas, Brazil, 2008.
[38]  A. F. Ribas, E. Dechamp, A. Champion et al., “Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures,” BMC Plant Biology, vol. 11, article 92, 2011.
[39]  J. Spiral, C. Thierry, M. Paillard, and V. Petiard, “Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes,” Comptes Rendus de l' Academie des Sciences de Paris, vol. 316, no. 1, pp. 1–6, 1993.
[40]  M. Sugiyama, C. Matsuoka, and T. Takagi, “Transformation of Coffea with Agrobacterium rhizogenes,” in Proceedings of the 16th International Conference on Coffee Science (ASIC '95), pp. 853–859, Kyoto, Japan, 1995.
[41]  C. A. Giménez, A. Menéndez-Yuffá, and E. de García, “Efecto del antibiótico kanamicina sobre diferentes explantes del híbrido de café (Coffea sp.) Catimor,” Phyton, vol. 59, pp. 39–46, 1996.
[42]  V. Kumar, K. V. Satyanarayana, S. Sarala Itty et al., “Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype,” Plant Cell Reports, vol. 25, no. 3, pp. 214–222, 2006.
[43]  E. Alpizar, E. Dechamp, B. Bertrand, P. Lashermes, and H. Etienne, “Transgenic roots for functional genomics of coffee resistance genes to root-knot nematodes,” in Proceedings of the 21st International Conference on Coffee Science (ASIC '06), pp. 653–659, Montpellier, France, September 2006.
[44]  E. Alpizar, E. Dechamp, S. Espeout et al., “Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots,” Plant Cell Reports, vol. 25, no. 9, pp. 959–967, 2006.
[45]  H. Etienne, P. Lashermes, A. Menendez-Yuffa, Z. de Guglielmo-Croquer, E. Alpizar, and H. L. Sreenath, “Coffee,” in Compendium of Transgenic Crop Plants, Transgenic Plantation Crops, Ornamentals and Turf Grasses, C. Kole and T. Hall, Eds., pp. 57–84, Wiley Blackwell Publishers, London, UK, 2008.
[46]  M. C. Combes, S. Andrzejewski, F. Anthony et al., “Characterization of microsatellite loci in Coffea arabica and related coffee species,” Molecular Ecology, vol. 9, no. 8, pp. 1178–1180, 2000.
[47]  D. L. Steiger, C. Nagai, P. H. Moore, C. W. Morden, R. V. Osgood, and R. Ming, “AFLP analysis of genetic diversity within and among Coffea arabica cultivars,” Theoretical and Applied Genetics, vol. 105, no. 2-3, pp. 209–215, 2002.
[48]  L. E. C. Diniz, N. S. Sakiyama, P. Lashermes, E. T. Caixeta, A. C. B. Oliveira, Zambolim, et al., “Analysis of AFLP marker associated to the Mex-1 resistance locus in Icatu progenies,” Crop Breeding and Applied Biotechnology, vol. 5, pp. 387–393, 2005.
[49]  M. P. Maluf, M. Silvestrini, L. M. C. Ruggiero, O. Guerreiro Filho, and C. A. Colombo, “Genetic diversity of Coffea arabica inbreed lines assessed by RAPD, AFLP and SSR marker system,” Scientia Agricola, vol. 62, no. 4, pp. 366–373, 2005.
[50]  P. S. Hendre, R. Phanindranath, V. Annapurna, A. Lalremruata, and R. K. Aggarwal, “Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies,” BMC Plant Biology, vol. 8, article 51, 2008.
[51]  R. F. Missio, E. T. Caixeta, E. M. Zambolim, L. Zambolim, C. D. Cruz, and N. S. Sakiyama, “Polymorphic information content of SSR markers for Coffea spp,” Crop Breeding and Applied Biotechnology, vol. 10, no. 1, pp. 89–94, 2010.
[52]  P. Tornincasa, R. Dreos, B. de Nardi, E. Asquini, J. Devasia, M. K. Mishra, et al., “Genetic diversity of commercial coffee (C. arabica L) from America, India and Africa assessed by simple sequence repeats (SSRs),” in Proceedings of the 21st International Association for Coffee Science (ASIC '06), pp. 778–785, Montpellier, France, 2006.
[53]  M. K. Mishra, S. Nishani, and Jayarama, “Genetic relationship among indigenous coffee species from India using RAPD, ISSR and SRAP markers,” Biharean Biologists, vol. 5, no. 1, pp. 17–24, 2011.
[54]  M. K. Mishra, S. Nishani, and Jayarama, “Molecular identification and genetic relationships among coffee species (Coffea L.) inferred from ISSR and SRAP marker analyses,” Archives of Biological Sciences, vol. 63, no. 3, pp. 667–679, 2011.
[55]  M. K. Mishra, N. Suresh, A. M. Bhat et al., “Genetic molecular analysis of Coffea arabica (Rubiaceae) hybrids using SRAP markers,” Revista de Biologia Tropical, vol. 59, no. 2, pp. 607–617, 2011.
[56]  M. K. Mishra, A. M. Bhat, N. Suresh et al., “Molecular genetic analysis of arabica coffee hybrids using SRAP marker approach,” Journal of Plantation Crops, vol. 39, no. 1, pp. 41–47, 2011.
[57]  M. K. Mishra, P. Tornincasa, B. de Nardi, E. Asquini, R. Dreos, L. Del Terra, et al., “Genome organization in coffee as revealed by EST PCRRFLP, SNPs and SSR analysis,” Journal of Crop Science and Biotechnology, vol. 14, no. 1, pp. 25–37, 2011.
[58]  M. T. Gil-Agusti, N. Campostrini, L. Zolla, C. Ciambella, C. Invernizzi, and P. G. Righetti, “Two-dimensional mapping as a tool for classification of green coffee bean species,” Proteomics, vol. 5, no. 3, pp. 710–718, 2005.
[59]  P. S. Hendre, R. K. Aggarwal, and D. N. A. Markers, “Development and applications for genetic improvement of coffee,” in Genomics Assisted Crop Improvement, R. K. Varshney and R. Tuberosa, Eds., vol. 2 of Genomics Application in Crops, pp. 399–434, Springer.
[60]  M. de Block, L. Herrera-Estrella, M. van Montagu, J. Schell, and P. Zambryski, “Expression of foreign genes in regenerated plants and in their progeny,” The EMBO Journal, vol. 3, no. 8, pp. 1681–1689, 1984.
[61]  G. Y. Zhong, “Genetic issues and pitfalls in transgenic plant breeding,” Euphytica, vol. 118, no. 2, pp. 137–144, 2001.
[62]  A. Pallavicini, L. Del Terra, M. R. Sondahl et al., “Transcriptomics of resistance response in Coffea arabica L,” in Proceedings of the 20th International conference on coffee science (ASIC '04), pp. 66–67, Bangalore, India, October 2004.
[63]  C. Lin, L. A. Mueller, J. M. Carthy, D. Crouzillat, V. Pétiard, and S. D. Tanksley, “Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts,” Theoretical and Applied Genetics, vol. 112, no. 1, pp. 114–130, 2005.
[64]  L. G. E. Vieira, A. C. Andrade, C. Colombo, et al., “Brazillian coffee genome project: an EST-based genomic resource,” Brazillian Journal of Plant Physiology, vol. 18, no. 1, pp. 95–108, 2006.
[65]  S. Noir, S. Patheyron, M. C. Combes, P. Lashermes, and B. Chalhoub, “Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.),” Theoretical and Applied Genetics, vol. 109, no. 1, pp. 225–230, 2004.
[66]  T. Leroy, P. Marraccini, M. Dufour et al., “Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes,” Theoretical and Applied Genetics, vol. 111, no. 6, pp. 1032–1041, 2005.
[67]  J. Spiral, T. Leroy, M. Paillard, and V. Petiard, “Transgenic coffee (Coffea sp.),” in Biotechnology in Agricultulture and Forestry, Y. P. S. Bajaj, Ed., pp. 55–76, Springer, Heidelberg, Germany, 1999.
[68]  M. F. Carneiro, “Advances in coffee biotechnology,” AgBiotechNet, vol. 1, pp. 1–14, 1999.
[69]  V. Kumar, M. M. Naidu, and G. A. Ravishankar, “Developments in coffee biotechnology—in vitro plant propagation and crop improvement,” Plant Cell, Tissue and Organ Culture, vol. 87, no. 1, pp. 49–65, 2006.
[70]  G. Staritsky, “Embryoid formation in callus tissues of coffee,” Acta Botanica Neerlandica, vol. 19, pp. 509–514, 1970.
[71]  W. R. Sharp, L. S. Caldas, O. J. Crocomo, L. C. Monaco, and A. Carvalho, “Production of Coffea arabica callus of three ploidy levels and subsequent morphogenesis,” Phyton, vol. 31, pp. 67–74, 1973.
[72]  M. R. Sondahl and W. Sharp, “High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L,” Zeitschrift für Pflanzenphysiologie, vol. 81, pp. 395–408, 1977.
[73]  M. R. Sondahl, D. Spahlinger, and W. R. Sharp, “A histological study of high frequency and low frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L,” Zeitschrift für Pflanzenphysiologie, vol. 94, no. 2, pp. 101–108, 1979.
[74]  F. R. Quiroz-Figueroa, C. F. J. Fuentes-Cerda, R. Rojas-Herrera, and V. M. Loyola-Vargas, “Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica,” Plant Cell Reports, vol. 20, no. 12, pp. 1141–1149, 2002.
[75]  F. R. Quiroz-Figueroa, M. Méndez-Zeel, F. Sánchez-Teyer, R. Rojas-Herrera, and V. M. Loyola-Vargas, “Differential gene expression in embryogenic and non-embryogenic clusters from cell suspension cultures of Coffea arabica,” Journal of Plant Physiology, vol. 159, no. 11, pp. 1267–1270, 2002.
[76]  F. R. Quiroz-Figueroa, M. Méndez-Zeel, A. Larqué-Saavedra, and V. M. Loyola-Vargas, “Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture,” Plant Cell Reports, vol. 20, no. 8, pp. 679–684, 2001.
[77]  P. Giridhar, E. P. Indu, G. A. Ravishankar, and A. Chandrasekar, “Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr,” In Vitro Cellular & Developmental Biology—Plant, vol. 40, no. 2, pp. 200–203, 2004.
[78]  P. Giridhar, E. P. Indu, K. Vinod, A. Chandrashekar, and G. A. Ravishankar, “Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P ex Fr. under the influence of ethylene action inhibitor-silver nitrate,” Acta Physiologiae Plantarum, vol. 26, no. 3, pp. 299–305, 2004.
[79]  P. Giridhar, V. Kumar, E. P. Indu, A. Chandrasekar, and G. A. Ravishankar, “Thidiazuron induced somatic embryogenesis in Coffea arabica L. and Coffea canephora P ex Fr,” Acta Botanica Croatica, vol. 63, no. 1, pp. 25–33, 2004.
[80]  V. Kumar, P. Giridhar, A. Chandrashekar, and G. A. Ravishankar, “Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex Fr,” Acta Physiologiae Plantarum, vol. 30, no. 2, pp. 217–223, 2008.
[81]  A. Ramakrishna, P. Giridhar, M. Jobin, C. S. Paulose, and G. A. Ravishankar, “Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr,” Plant Cell, Tissue and Organ Culture, vol. 108, no. 2, pp. 267–278, 2012.
[82]  T. Hatanaka, E. Sawabe, T. Azuma, N. Uchida, and T. Yasuda, “The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora,” Plant Science, vol. 107, no. 2, pp. 199–204, 1995.
[83]  M. de Feria, E. Jiménez, R. Barbón, A. Capote, M. Chávez, and E. Quiala, “Effect of dissolved oxygen concentration on differentiation of somatic embryos of Coffea arabica cv. Catimor 9722,” Plant Cell, Tissue and Organ Culture, vol. 72, no. 1, pp. 1–6, 2003.
[84]  A. Zamarripa, J. P. Ducos, H. Tessereau, H. Bollon, A. B. Eskes, and V. Pétiard, “Développement d’un procédé demultiplication en masse du caféier par embryogenèse somatique en milieu liquide,” in Proceedings of the 14th International Scientific Colloquium on Coffee (ASIC '91), pp. 392–402, San Francisco, Calif, USA, 1991.
[85]  A. Zamarripa, Etude et development de l’embryogenese en millieu liquid du cafeier (Coffea canephora P., Coffea arabica L. Et Hybrid Arabusta) [Ph.D. thesis], Ecolo National Superieure Agronomique, Rennes, France, 1993.
[86]  J. P. Ducos, A. Zamarripa, A. B. Eskes, and V. Petiard, “Production of somatic embryos of coffee in a bioreactor,” in Proceedings of the 15th International Conference on Coffee Science (ASIC '93), pp. 89–96, Montpellier, France, 1993.
[87]  C. Noega and M. R. Sondahl, “Arabica coffee micropropagation through somatic embryogenesis via bioreactors,” in Proceedings of the 15th International Conference on Coffee Science (ASIC '93), pp. 73–81, Montpellier, France, 1993.
[88]  H. Etienne and M. Berthouly, “Temporary immersion systems in plant micropropagation,” Plant Cell, Tissue and Organ Culture, vol. 69, no. 3, pp. 215–231, 2002.
[89]  J. Albarrán, B. Bertrand, M. Lartaud, and H. Etienne, “Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos,” Plant Cell, Tissue and Organ Culture, vol. 81, no. 1, pp. 27–36, 2005.
[90]  M. F. Carneiro and T. M. O. Ribeiro, “In vitro meristem culture and plant regeneration in some genotypes of Coffea arabica,” Broteria Genetica, vol. 85, pp. 127–138, 1989.
[91]  M. Berthouly, D. Alvarad, C. Carrasco, and C. Teisson, “In vitro micropropagation of coffee sp. By temporary immersion,” in Abstracts Eighth International Congress of Plant Tissue and Cell Culture, p. 162, Florence, Italy, 1994.
[92]  C. Teisson, D. Alvard, M. Berthouly, F. Cote, J. V. Escalant, and H. Etienne, “Culture in vitro par immersion temporaire un nouveau récipient,” Plantations, Recherche, Développement, vol. 2, no. 5, pp. 29–31, 1995.
[93]  J. P. Ducos, R. Alenton, J. F. Reano, C. Kanchanomai, A. Deshayes, and V. Pétiard, “Agronomic performance of Coffea canephora P. trees derived from large-scale somatic embryo production in liquid medium,” Euphytica, vol. 131, no. 2, pp. 215–223, 2003.
[94]  M. R. Sondahl, W. R. Romig, and A. Bragin, “Induction and selection of somaclonal variation in coffee,” US patent 5436395, 1995.
[95]  V. M. Loyola-Vargas, C. Fuentes, M. Monforte-Gonzalez, M. Mendez-Zeel, R. Rojas, and J. Mijangos-Cortes, “Coffee tissue culture as a new modelfor the study of somaclonal variation,” in Proceedings of the 18th International Conference on Coffee Science (ASIC '99), pp. 302–307, Paris, France, 1999.
[96]  L. F. Sanchez-Teyer, F. R. Quiroz-Figueroa, V. M. Loyola-Vargas, and D. Infante-Herrera, “Culture-induced variation in plants of Coffea arabica cv. Caturra rojo, regenerated by direct and indirect somatic embryogenesis,” Molecular Biotechnology, vol. 23, no. 2, pp. 107–115, 2003.
[97]  V. Rani, K. P. Singh, B. Shiran et al., “Evidence for new nuclear and mitochondrial genome organizations among high-frequency somatic embryogenesis-derived plants of allotetraploid Coffea arabica L. (Rubiaceae),” Plant Cell Reports, vol. 19, no. 10, pp. 1013–1020, 2000.
[98]  D. Ganesh and H. L. Sreenath, “Embryo culture in coffee: technique and applications,” Indian Coffee, vol. 4, pp. 7–9, 1999.
[99]  G. de Moro, M. Modonut, E. Asquini, P. Tornincasa, A. Pallavicini, and G. Graziosi, “Development and analysis of an EST databank of Coffea arabica,” in Proceedings of the 6th Solanaceae Genome Workshop, p. 127, New Delhi, India, 2009.
[100]  K. V. Satyanarayana, V. Kumar, A. Chandrashekar, and G. A. Ravishankar, “Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora,” Journal of Biotechnology, vol. 119, no. 1, pp. 20–25, 2005.
[101]  C. Hinniger, V. Caillet, F. Michoux et al., “Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development,” Annals of Botany, vol. 97, no. 5, pp. 755–765, 2006.
[102]  A. J. Simkin, T. Qian, V. Caillet et al., “Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain,” Journal of Plant Physiology, vol. 163, no. 7, pp. 691–708, 2006.
[103]  S. Noir, F. Anthony, B. Bertrand, M. C. Combes, and P. Lashermes, “Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica,” Plant Pathology, vol. 52, no. 1, pp. 97–103, 2003.
[104]  N. S. Prakash, D. V. Marques, V. M. P. Varzea, M. C. Silva, M. C. Combes, and P. Lashermes, “Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L,” Theoretical and Applied Genetics, vol. 109, no. 6, pp. 1311–1317, 2004.
[105]  E. K. Gichuru, M. C. Combes, E. W. Mutitu, et al., “Characterization and genetic mapping of a gene conferring resistance to coffee berry disease (Colletotrichum kahawae) in Arabica coffee (Coffea arabica),” in Proceedings of the 21st International Conference on Coffee Science (ASIC '06), pp. 786–793, Montpellier, France, 2006.
[106]  S. Ogita, H. Uefuji, Y. Yamaguchi, N. Koizumi, and H. Sano, “RNA interference: producing decaffeinated coffee plants,” Nature, vol. 423, no. 6942, p. 823, 2003.
[107]  V. Sridevi, P. Giridhar, P. S. Simmi, and G. A. Ravishankar, “Direct shoot organogenesis on hypocotyl explants with collar region from in vitro seedlings of Coffea canephora Pierre ex. Frohner cv. C × R and Agrobacterium tumefaciens-mediated transformation,” Plant Cell, Tissue and Organ Culture, vol. 101, no. 3, pp. 339–347, 2010.
[108]  T. Leroy and M. Dufour, “Coffea spp. Genetic transformation,” in Transgenic Crops of the World: Essential Protocols, I. S. Curtis, Ed., pp. 159–170, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
[109]  T. Leroy, M. Royer, M. Paillard et al., “Introduction de genes d interet agronomique dans I’espece Coffea canephora Pierre par transformation avec Agrobacterium sp,” in Proceedings of the 17th International Conference on Coffee Science (ASIC '97), pp. 439–446, Nairobi, Kenya, 1997.
[110]  J. van Boxtel, A. Eskes, and M. Berthouly, “Glufosinate as an efficient inhibitor of callus proliferation in coffee tissue,” In Vitro Cellular & Developmental Biology—Plant, vol. 33, no. 1, pp. 6–12, 1997.
[111]  N. P. Samson, C. Campa, M. Noirot, and A. de Kochko, “Potential use of D-xylose for coffee transformation,” in Proceedings of the 20th International Conference on Coffee Science (ASIC '04), pp. 707–713, Bangalore, India, 2004.
[112]  M. K. Mishra, S. Devi, A. McCormac et al., “Green fluorescent protein as a visual selection marker for coffee transformation,” Biologia, vol. 65, no. 4, pp. 639–646, 2010.
[113]  B. Perthuis, T. Leroy, M. Dufour et al., “Variability in the insecticidal protein concentration within transformed Coffea canephora observed in a field experiment,” in Proceedings of the 21st International Cconference on Coffee Science (ASIC '06), pp. 1390–1393, Montpellier, France, September 2006.
[114]  C. Montagnon, “Genetically modified coffees- the experience of CIRAD,” in ICO seminar on Genetically Modified Coffee Workshop, May 2005, http://dev.ico.org/event_pdfs/gm/presentations/Christophe%20Montagnon.pdf.
[115]  I. Méndez-López, R. Basurto-Ríos, and J. E. Ibarra, “Bacillus thuringiensis serovar israelensis is highly toxic to the coffee berry borer, Hypothenemus hampei Ferr. (Coleoptera: Scolytidae),” FEMS Microbiology Letters, vol. 226, no. 1, pp. 73–77, 2003.
[116]  M. F. Grossi de Sa, R. A. Pereira, E. V. S. A. Barros et al., “Uso de inibidores de alfa-amilases no controle da broca-do-cafe,” in Anais do workshop Internacional de Manejo da Broca-do-cafe, Paraná, Brazil, 2004.
[117]  V. P. Campos, P. Sivapalan, and N. C. Gnanapragasam, “Nematode parasites of coffee, cocoa and tea,” in Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, M. Luc, R. A. Sikora, and J. Bridge, Eds., pp. 113–126, CAB International, Wallingford, UK, 1990.
[118]  B. Bertrand, F. Anthony, and P. Lashermes, “Breeding for resistance to Meloidogyne exigua in Coffea arabica by introgression of resistance genes of Coffea canephora,” Plant Pathology, vol. 50, no. 5, pp. 637–643, 2001.
[119]  M. M. Chaves, J. P. Maroco, and J. S. Pereira, “Understanding plant responses to drought—from genes to the whole plant,” Functional Plant Biology, vol. 30, no. 3, pp. 239–264, 2003.
[120]  M. M. Chaves and M. M. Oliveira, “Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture,” Journal of Experimental Botany, vol. 55, no. 407, pp. 2365–2384, 2004.
[121]  I. Coraggio and R. Tuberosa, “Molecular basis of plant adaptation to abiotic stress and approaches to enhance tolerance to hostile environment,” in Hand Book of Plant Biotechnology, P. Christou and H. Klee, Eds., pp. 413–466, John Wiley & Sons, West Sussex, UK, 2004.
[122]  H. A. M. van der Vossen, “Agronomy I: coffee breeding practices,” in Coffee: Recent Developments, R. J. Clarke and O. G. Vitzthum, Eds., pp. 184–201, Blackwell Science, London, UK, 2001.
[123]  M. S. Sreenivasan, “Breeding for leaf rust resistance in India,” in Coffee Rust: Epidemiology, Resistance and Management, A. C. Kushalappa and A. B. Eskes, Eds., pp. 316–323, CRC Press, Boca Raton, Fla, USA, 1989.
[124]  B. J. Staskawicz, F. M. Ausubel, B. J. Baker, J. G. Ellis, and J. D. G. Jones, “Molecular genetics of plant disease resistance,” Science, vol. 268, no. 5211, pp. 661–667, 1995.
[125]  B. J. Feys and J. E. Parker, “Interplay of signaling pathways in plant disease resistance,” Trends in Genetics, vol. 16, no. 10, pp. 449–455, 2000.
[126]  F. L. W. Takken and M. H. A. J. Joosten, “Plant resistance genes: their structure, function and evolution,” European Journal of Plant Pathology, vol. 106, no. 8, pp. 699–713, 2000.
[127]  X. Dong, “SA, JA, ethylene, and disease resistance in plants,” Current Opinion in Plant Biology, vol. 1, no. 4, pp. 316–323, 1998.
[128]  M. P. Does and B. J. C. Cornelissen, “Emerging strategies to control fungal diseases using transgenic plants,” in in proceedings of International Crop Science Congress, V. L. Chopra, R. B. Singh, and A. Verma, Eds., pp. 233–244, Oxford and IBH, New Delhi, India, 1998.
[129]  D. Fernandez, P. Santos, C. Agostini et al., “Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix),” Molecular Plant Pathology, vol. 5, no. 6, pp. 527–536, 2004.
[130]  B. de Nardi, R. Dreos, L. Del Terra et al., “Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance,” Genome, vol. 49, no. 12, pp. 1594–1605, 2006.
[131]  K. David, “Fun without the buzz: decaffeination process and issues,” 2002, http://www.virtualcoffee.com/sept_2002/decafe.html.
[132]  M. N. Clifford, “Chemical and physical aspects of green coffee and coffee products,” in Coffee: Botany Biochemistry and Production of Beans and Beverages, M. N. Clifford and K. C. Williamson, Eds., pp. 304–374, AVI, Westport, Conn, USA, 1985.
[133]  C. A. B. de Maria, L. C. Trugo, F. R. Aquino Neto, R. F. A. Moreira, and C. S. Alviano, “Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting,” Food Chemistry, vol. 55, no. 3, pp. 203–207, 1996.
[134]  M. N. Clifford, “Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden,” Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 362–372, 1999.
[135]  C. Campa, M. Noirot, M. Bourgeois et al., “Genetic mapping of a caffeoyl-coenzyme A 3-0-methyltransferase gene in coffee trees. Impact on chlorogenic acid content,” Theoretical and Applied Genetics, vol. 107, no. 4, pp. 751–756, 2003.
[136]  K. Hahlbrock and D. Scheel, “Physiology and molecular biology of phenyl-propanoid metabolism,” Annual Review of Plant Physiology and Plant Molecular Biololgy, vol. 40, pp. 347–369, 1989.
[137]  V. Mahesh, J. J. Rakotomalala, L. L. Gal et al., “Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids,” Plant Cell Reports, vol. 25, no. 9, pp. 986–992, 2006.
[138]  G. Parvatam, V. Mahesh, G. A. Ravishankar, C. Campa, and A. de Kochko, “Functional validation of Coffea PAL genes using genetic engineering,” in Proceedings of the 21st International Conference on Coffee Science (ASIC '06), pp. 702–705, Montpellier, France, September 2006.
[139]  L. F. Protasio Pereira, R. M. Galv?o, A. K. Kobayashi, S. M. B. Ca??o, and L. G. Esteves Vieira, “Ethylene production and ACC oxidase gene expression during fruit ripening of Coffea arabica L,” Brazilian Journal of Plant Physiology, vol. 17, no. 3, pp. 283–289, 2005.
[140]  K. R. Neupane, S. Moisyadi, and J. Stiles, “Cloning and characterization of fruit expressed ACC synthase and ACC oxidase from coffee,” in In Proceedings of the 18th International Conference on Coffee Science (ASIC '99), pp. 322–326, Helsinki, Finland, 1999.
[141]  A. F. Ribas, L. F. P. Pereira, and L. G. E. Vieira, “Genetic transformation of coffee,” Brazilian Journal of Plant Physiology, vol. 18, no. 1, pp. 83–94, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133