全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Index of CD34+ Cells and Mononuclear Cells in the Bone Marrow of Spinal Cord Injury Patients of Different Age Groups: A Comparative Analysis

DOI: 10.1155/2012/787414

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. Recent evidence of safety and efficacy of Bone Marrow Mononuclear Cells (BMMNC) in spinal cord injury makes the Bone Marrow (BM) CD34+ percentage and the BMMNC count gain significance. The indices of BM that change with body mass index and aging in general population have been reported but seldom in Spinal Cord Injury (SCI) victims, whose parameters of relevance differ from general population. Herein, we report the indices of BMMNC in SCI victims. Materials and Methods. BMMNCs of 332 SCI patients were isolated under GMP protocols. Cell count by Trypan blue method and CD34+ cells by flow cytometry were documented and analysed across ages and gender. Results. The average BMMNC per ml in the age groups 0–20, 21–40, 41–60, and 61–80 years were 4.71, 4.03, 3.67, and 3.02 million and the CD34+ were 1.05%, 1.04%, 0.94%, and 0.93% respectively. The decline in CD34+ was sharp between 20–40 and 40–60 age groups. Females of reproductive age group had lesser CD34+. Conclusion. The BMMNC and CD34+ percentages decline with aging in SCI victims. Their lower values in females during reproductive age should be analysed for relevance to hormonal influence. This study offers reference values of BMMNC and CD34+ of SCI victims for successful clinical application. 1. Introduction With a reported global prevalence ranging from 236 to 1009 per million [1], Spinal Cord Injury (SCI) continues to be a devastating problem with no definite solutions. Spinal Cord Injury may be due to both traumatic (e.g., road traffic accidents) or nontraumatic causes (e.g., infections, congenital causes, tumours, etc.). In traumatic spinal cord injury, primary injury caused by compression or traction causes direct injury to neural elements due to the displaced bone fragments, ligaments, and disc material which leads to damage of the axons, neural cell bodies, and blood vessels. The spinal cord swells occupying the entire diameter of the spinal canal and ischemia results. The ischemia by releasing toxins gives rise to a cascade of secondary events ultimately leading to damage of the neighbouring healthy neurons [2]. The current mainline approaches of treatment involve removal of the bone fragments or other components to decompress the swollen spinal cord with the primary approach being limiting the secondary damage, followed by rehabilitation to assist in spontaneous recovery [2]. However the recovery is only limited in most of the cases. Hence, newer therapeutic options are being explored which might aid in complete recovery of the injured spinal cord. In this context, in addition to

References

[1]  R. A. Cripps, B. B. Lee, P. Wing, E. Weerts, J. MacKay, and D. Brown, “A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention,” Spinal Cord, vol. 49, no. 4, pp. 493–501, 2011.
[2]  J. W. McDonald and C. Sadowsky, “Spinal-cord injury,” The Lancet, vol. 359, no. 9304, pp. 417–425, 2002.
[3]  A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, supplement 1, pp. S79–S90, 2012.
[4]  A. F. Samdani, C. Paul, R. R. Betz, I. Fischer, and B. Neuhuber, “Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study,” Spine, vol. 34, no. 24, pp. 2605–2612, 2009.
[5]  E. Syková, A. Homola, R. Mazanec et al., “Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury,” Cell Transplantation, vol. 15, no. 8-9, pp. 675–687, 2006.
[6]  T. Yoshihara, M. Ohta, Y. Itokazu et al., “Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury,” Journal of Neurotrauma, vol. 24, no. 6, pp. 1026–1036, 2007.
[7]  J. B. William, R. Prabakaran, S. Ayyappan, et al., “Functional recovery of spinal cord injury following application of intralesional bone marrow mononuclear cells embedded in polymer scaffold—two year follow-up in a Canine,” Journal of Stem Cell Research & Therapy, vol. 1, p. 110, 2011.
[8]  H. C. Park, Y. S. Shim, Y. Ha et al., “Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor,” Tissue Engineering, vol. 11, no. 5-6, pp. 913–922, 2005.
[9]  F. Callera and R. X. Do Nascimento, “Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study,” Experimental Hematology, vol. 34, no. 2, pp. 130–131, 2006.
[10]  S. H. Yoon, Y. S. Shim, H. P. Yong et al., “Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial,” Stem Cells, vol. 25, no. 8, pp. 2066–2073, 2007.
[11]  H. Deda, M. C. Inci, A. Kurek?i et al., “Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up,” Cytotherapy, vol. 10, no. 6, pp. 565–574, 2008.
[12]  L. F. Geffner, P. Santacruz, M. Izurieta et al., “Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies,” Cell Transplantation, vol. 17, no. 12, pp. 1277–1293, 2008.
[13]  S. Yasuhara, Y. Yasunaga, T. Hisatome et al., “Efficacy of bone marrow mononuclear cells to promote bone regeneration compared with isolated CD34+ cells from the same volume of aspirate,” Artificial Organs, vol. 34, no. 7, pp. 594–599, 2010.
[14]  D. F. Stroncek, M. E. Clay, J. Smith et al., “Composition of peripheral blood progenitor cell components collected from healthy donors,” Transfusion, vol. 37, no. 4, pp. 411–417, 1997.
[15]  W. Bouwmeester, M. M. Fechter, M. W. Heymans, J. W. R. Twisk, L. J. Ebeling, and A. Brand, “Prediction of nucleated cells in bone marrow stem cell products by donor characteristics: a retrospective single centre analysis,” Vox Sanguinis A, vol. 98, no. 3, pp. e276–e283, 2010.
[16]  C. Zhang, X. H. Chen, X. Zhang et al., “Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings,” Transfusion Medicine, vol. 20, no. 3, pp. 169–177, 2010.
[17]  S. L. Groah, M. S. Nash, I. H. Ljungberg et al., “Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury,” Journal of Spinal Cord Medicine, vol. 32, no. 1, pp. 25–33, 2009.
[18]  Y. Chen, Y. Cao, V. Allen, and J. S. Richards, “Weight matters: physical and psychosocial well being of persons with spinal cord injury in relation to body mass index,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 3, pp. 391–398, 2011.
[19]  D. A. Crane, J. W. Little, and S. P. Burns, “Weight gain following spinal cord injury: a pilot study,” Journal of Spinal Cord Medicine, vol. 34, no. 2, pp. 227–232, 2011.
[20]  E. Kostovski, P. O. Iversen, and N. Hjeltnes, “Complications of chronic spinal cord injury,” Tidsskr Nor Laegeforen, vol. 130, no. 12, pp. 1242–1245, 2010.
[21]  E. R. Chernykh, E. Y. Shevela, O. Y. Leplina et al., “Characteristics of bone marrow cells under conditions of impaired innervation in patients with spinal trauma,” Bulletin of Experimental Biology and Medicine, vol. 141, no. 1, pp. 117–120, 2006.
[22]  K. T. Wright, W. E. Masri, A. Osman et al., “The cell culture expansion of bone marrow stromal cells from humans with spinal cord injury: implications for future cell transplantation therapy,” Spinal Cord, vol. 46, no. 12, pp. 811–817, 2008.
[23]  K. T. Wright, W. El Masri, A. Osman, J. Chowdhury, and W. E. B. Johnson, “Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications,” Stem Cells, vol. 29, no. 2, pp. 169–178, 2011.
[24]  S. H. Chen, S. H. Yang, S. C. Chu et al., “The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization,” International Journal of Hematology, pp. 1–8, 2011.
[25]  C. F. Bellows, Y. Zhang, P. J. Simmons, A. S. Khalsa, and M. G. Kolonin, “Influence of BMI on level of circulating progenitor cells,” Obesity, vol. 19, no. 8, pp. 1722–1726, 2011.
[26]  O. E. Sigurjonsson, M. C. Perreault, T. Egeland, and J. C. Glover, “Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5227–5232, 2005.
[27]  H. Newman, J. A. Reems, T. H. Rigley, D. Bravo, and D. M. Strong, “Donor age and gender are the strongest predictors of marrow recovery from cadaveric vertebral bodies,” Cell Transplantation, vol. 12, no. 1, pp. 83–90, 2003.
[28]  Y. J. Chang, X. Y. Zhao, M. R. Huo, X. H. Luo, and X. J. Huang, “CD34 cells and T cell subsets in recombinant human granulocyte colony-stimulating factor primed bone marrow grafts from donors with different characteristics,” Zhonghua Xue Ye Xue Za Zhi, vol. 29, no. 8, pp. 512–516, 2008.
[29]  L. D. Guariniello, P. Vicari, K. S. Lee, A. C. de Oliveira, and S. Tufik, “Bone marrow and peripheral white blood cells number is affected by sleep deprivation in a murine experimental model,” Journal of Cellular Physiology, vol. 227, no. 1, pp. 361–366, 2012.
[30]  G. de Haan and G. Van Zant, “Dynamic changes in mouse hematopoietic stem cell numbers during aging,” Blood, vol. 93, no. 10, pp. 3294–3301, 1999.
[31]  O. Tsinkalovsky, R. Smaaland, B. Rosenlund et al., “Circadian variations in clock gene expression of human bone marrow CD34+ cells,” Journal of Biological Rhythms, vol. 22, no. 2, pp. 140–150, 2007.
[32]  H. Ema, T. Suda, Y. Miura, and H. Nakauchi, “Colony formation of clone-sorted human hematopoietic progenitors,” Blood, vol. 75, no. 10, pp. 1941–1946, 1990.
[33]  M. Mohamadnejad, M. Namiri, M. Bagheri et al., “Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3359–3363, 2007.
[34]  P. Hernández, L. Cortina, H. Artaza et al., “Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation,” Atherosclerosis, vol. 194, no. 2, pp. e52–e56, 2007.
[35]  P. L. N. Kaparthi, G. Namita, L. K. Chelluri et al., “Autologous bone marrow mononuclear cell delivery to dilated cardiomyopathy patients: a clinical trial,” African Journal of Biotechnology, vol. 7, no. 3, pp. 207–210, 2008.
[36]  M. T. Harting, C. S. Cox, M. C. Day et al., “Bone marrow-derived mononuclear cell populations in pediatric and adult patients,” Cytotherapy, vol. 11, no. 4, pp. 480–484, 2009.
[37]  P. Perseghin and A. Incontri, “Mononuclear cell collection in patients treated with extracorporeal photochemotherapy by using the off-line method: a comparison between COBE Spectra AutoPbsc version 6.1 and Amicus cell separators,” Journal of Clinical Apheresis, vol. 25, no. 6, pp. 310–314, 2010.
[38]  I. Stelzer, R. Fuchs, E. Schraml et al., “Decline of bone marrow-derived hematopoietic progenitor cell quality during aging in the rat,” Experimental Aging Research, vol. 36, no. 3, pp. 359–370, 2010.
[39]  H. Vaziri, W. Dragowska, R. C. Allsopp, T. E. Thomas, C. B. Harley, and P. M. Lansdorp, “Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9857–9860, 1994.
[40]  K. Huang, D. H. Zhou, S. L. Huang, and S. H. Liang, “Age-related biological characteristics of human bone marrow mesenchymal stem cells from different age donors,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 13, no. 6, pp. 1049–1053, 2005.
[41]  S. J. Morrison, A. M. Wandycz, K. Akashi, A. Globerson, and I. L. Weissman, “The aging of hematopoietic stem cells,” Nature Medicine, vol. 2, no. 9, pp. 1011–1016, 1996.
[42]  L. Berkahn and A. Keating, “Hematopoiesis in the elderly,” Hematology, vol. 9, no. 3, pp. 159–163, 2004.
[43]  K. Kuranda, J. Vargaftig, P. de la Rochere et al., “Age-related changes in human hematopoietic stem/progenitor cells,” Aging Cell, vol. 10, no. 3, pp. 542–546, 2011.
[44]  R. H. Cho, H. B. Sieburg, and C. E. Muller-Sieburg, “A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells,” Blood, vol. 111, no. 12, pp. 5553–5561, 2008.
[45]  P. Aroviita, K. Teramo, V. Hiilesmaa, and R. Kekom?ki, “Cord blood hematopoietic progenitor cell concentration and infant sex,” Transfusion, vol. 45, no. 4, pp. 613–621, 2005.
[46]  R. Ray, N. M. Novotny, P. R. Crisostomo, T. Lahm, A. Abarbanell, and D. R. Meldrum, “Sex steroids and stem cell function,” Molecular Medicine, vol. 14, no. 7-8, pp. 493–501, 2008.
[47]  S. Abraham, S. Manjunath, S. Baskar, et al., “Autologous stem cell injections for spinal cord injury-a multicentric study with 6 month follow up of 108 patients. 7th Annual Meeting of Japanese Society of Regenerative Medicine, Nagoya, Japan, 13-14 March 2008. Saisei-iryo (Regenerative Medicine),” Journal of Japanese Society of Regenerative Medicine, vol. 7, supplement 1, 2008, abstract No O-13-7.
[48]  K. M. Page, L. Zhang, A. Mendizabal et al., “Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single-center analysis of 435 cord blood transplants,” Biology of Blood and Marrow Transplantation, vol. 17, no. 9, pp. 1362–1374, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133