Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed. 1. Introduction The use of fossil fuels for energy and raw material in the past century has led to widespread environmental pollution. Among these pollutants are polycyclic aromatic hydrocarbons (PAHs), which are considered a potential health risk because of their possible carcinogenic and mutagenic activities [1]. PAHs consist of benzene analogs having two or more aromatic rings in various alignments (Figure 1). Most of the low-molecular-weight PAHs (up to three aromatic rings) are very toxic [2], and most of the high-molecular-weight PAHs (four and more aromatic rings) are highly mutagenic, teratogenic, and carcinogenic for humans and animals [3]. PAHs are compounds of great environmental significance and are considered by the Environmental Protection Agency (USA) and other national institutions to be of toxicological relevance [http://www.defra.gov.uk/Environment/consult/airqual01/11.htm]. Figure 1: Chemical formulas of some 3-, 4- and 5-ring PAHs [ http://www.chemport.ru/]. The general and scientific interest in the fate of PAHs in the environment and their microbial degradation, especially of higher-molecular-weight PAHs consisting of more than four rings, is based on their carcinogenic and mutagenic properties. Many reviews are available on different aspects of PAH degradation [4–6]. Several fungi are known to have the property of degradation PAHs. The degradation of these compounds by ligninolytic fungi, including white-rot and litter-decomposing fungi, has been intensively studied. They produce extracellular enzymes with very low substrate specificity, making them suitable for degradation of lignin and different low- and higher-molecular-weight aromatic compounds [6].
References
[1]
E. Torres, R. Tinoco, and R. Vazquez-Duhalt, “Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents,” Water Science and Technology, vol. 36, no. 10, pp. 37–44, 1997.
[2]
M. Moore, D. Livingstone, and J. Widdows, “Hydrocarbons in marine mollusks: biological effects and ecological consequences,” in Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment, U. Varanishi, Ed., pp. 291–328, CRC Press, Boca Raton, Fla, USA, 1989.
[3]
R. Pahlman and O. Pelkonen, “Mutagenicity studies of different polycyclic aromatic hydrocarbons: the significance of enzymatic factors and molecular structure,” Carcinogenesis, vol. 8, no. 6, pp. 773–778, 1987.
[4]
C. E. Cerniglia, “Biodegradation of polycyclic aromatic hydrocarbons,” Current Opinion in Biotechnology, vol. 4, no. 3, pp. 331–338, 1993.
[5]
A. L. Juhasz and R. Naidu, “Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene,” International Biodeterioration and Biodegradation, vol. 45, no. 1-2, pp. 57–88, 2000.
[6]
A. K. Haritash and C. P. Kaushik, “Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review,” Journal of Hazardous Materials, vol. 169, no. 1-3, pp. 1–15, 2009.
[7]
B. W. Bogan and R. T. Lamar, “Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes,” Applied and Environmental Microbiology, vol. 62, no. 5, pp. 1597–1603, 1996.
[8]
P. J. Collins and A. D. W. Dobson, “Oxidation of fluorene and phenanthrene by Mn2+-dependent peroxidase activity in whole cultures of Trametes (Coriolus) versicolor,” Biotechnology Letters, vol. 18, no. 7, pp. 801–804, 1996.
[9]
U. Sack, T. M. Heinze, J. Deck et al., “Comparison of phenanthrene and pyrene degradation by different wood- decaying fungi,” Applied and Environmental Microbiology, vol. 63, no. 10, pp. 3919–3925, 1997.
[10]
K. Steffen, A. Hatakka, and M. Hofrichter, “Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi,” Applied Microbiology and Biotechnology, vol. 60, no. 1-2, pp. 212–217, 2003.
[11]
K. T. Steffen, A. Hatakka, and M. Hofrichter, “Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase,” Applied and Environmental Microbiology, vol. 69, no. 7, pp. 3957–3964, 2003.
[12]
J. A. Field, E. De Jong, G. F. Costa, and J. A. M. De Bont, “Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi,” Applied and Environmental Microbiology, vol. 58, no. 7, pp. 2219–2226, 1992.
[13]
B. W. Bogan and R. T. Lamar, “One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 61, no. 7, pp. 2631–2635, 1995.
[14]
L. Bezalel, Y. Hadar, P. P. Fu, J. P. Freeman, and C. E. Cerniglia, “Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2554–2559, 1996.
[15]
L. Bezalel, Y. Hadar, P. P. Fu, J. P. Freeman, and C. E. FCerniglia, “Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2547–2553, 1996.
[16]
L. Bezalel, Y. Hadar, and C. E. Cerniglia, “Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 62, no. 1, pp. 292–295, 1996.
[17]
B. W. Bogan, R. T. Lamar, and K. E. Hammel, “Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation,” Applied and Environmental Microbiology, vol. 62, no. 5, pp. 1788–1792, 1996.
[18]
M. Hofrichter, K. Scheibner, I. Schneega?, and W. Fritsche, “Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii,” Applied and Environmental Microbiology, vol. 64, no. 2, pp. 399–404, 1998.
[19]
M. A. Pickard, R. Roman, R. Tinoco, and R. Vazquez-Duhalt, “Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase,” Applied and Environmental Microbiology, vol. 65, no. 9, pp. 3805–3809, 1999.
[20]
M. J. Han, H. T. Choi, and H. G. Song, “Degradation of phenanthrene by Trametes versicolor and its laccase,” Journal of Microbiology, vol. 42, no. 2, pp. 94–98, 2004.
[21]
S. V. Nikiforova, N. N. Pozdnyakova, O. E. Makarov, M. P. Chernyshova, and O. V. Turkovskaya, “Chrysene bioconversion by the white rot fungus Pleurotus ostreatus D1,” Microbiology, vol. 79, no. 4, pp. 456–460, 2010.
[22]
N. N. Pozdnyakova, S. V. Nikiforova, O. E. Makarov, M. P. Chernyshova, K. E. Pankin, and O. V. Turkovskaya, “Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1,” World Journal of Microbiology and Biotechnology, vol. 26, no. 2, pp. 205–211, 2010.
[23]
N. N. Pozdnyakova, S. V. Nikiforova, and O. V. Turkovskaya, “Influence of PAHs on ligninolytic enzymes of the fungus Pleurotus ostreatus D1,” Central European Journal of Biology, vol. 5, no. 1, pp. 83–94, 2010.
[24]
T. S. Brodkorb and R. L. Legge, “Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 9, pp. 3117–3121, 1992.
[25]
M. A. Moen and K. E. Hammel, “Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus,” Applied and Environmental Microbiology, vol. 60, no. 6, pp. 1956–1961, 1994.
[26]
B. W. Bogan, B. Schoenike, R. T. Lamar, and D. Cullen, “Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2381–2386, 1996.
[27]
R. May, P. Schr?der, and H. Sandermann, “Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium,” Environmental Science and Technology, vol. 31, no. 9, pp. 2626–2633, 1997.
[28]
E. Lang, F. Nerud, and F. Zadrazil, “Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms,” FEMS Microbiology Letters, vol. 167, no. 2, pp. 239–244, 1998.
[29]
T. Eggen, “Application of fungal substrate from commercial mushroom production—Pleurotus ostreatus—for bioremediation of creosote contaminated soil,” International Biodeterioration and Biodegradation, vol. 44, no. 2-3, pp. 117–126, 1999.
[30]
P. Baldrian, C. In Der Wiesche, J. Gabriel, F. Nerud, and F. Zadra?il, “Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2471–2478, 2000.
[31]
N. Pozdnyakova, E. Dubrovskaya, O. Makarov, V. Nikitina, and O. Turkovskaya, “Production of ligninolytic enzymes by white-rot fungi during bioremediation of oil-contaminated soil,” in Soil Enzymology, Soil Biology, G. Shukla and A. Varma, Eds., vol. 22, pp. 363–377, Springer, Berlin, Germany, 2011.
[32]
J. A. Bumpus, M. Tien, D. Wright, and S. D. Aust, “Oxidation of persistent environmental pollutants by a white rot fungus,” Science, vol. 228, no. 4706, pp. 1434–1436, 1985.
[33]
S. B. Pointing, “Feasibility of bioremediation by white-rot fungi,” Applied Microbiology and Biotechnology, vol. 57, no. 1-2, pp. 20–33, 2001.
[34]
S. J. Cho, S. J. Park, J. S. Lim, Y. H. Rhee, and K. S. Shin, “Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus,” Biotechnology Letters, vol. 24, no. 16, pp. 1337–1340, 2002.
[35]
P. Baborová, M. M?der, P. Baldrian, K. Cajthamlová, and T. Cajthaml, “Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme,” Research in Microbiology, vol. 157, no. 3, pp. 248–253, 2006.
[36]
L. Bezalel, Y. Hadar, and C. E. Cerniglia, “Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2495–2501, 1997.
[37]
U. Sack, M. Hofrichter, and W. Fritsche, “Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii,” FEMS Microbiology Letters, vol. 152, no. 2, pp. 227–234, 1997.
[38]
M. I. S. Kim, E. J. Huh, H. K. Kim, and K. W. Moon, “Degradation of polycyclic aromatic hydrocarbons by selected white-rot fungi and the influence of lignin peroxidase,” Journal of Microbiology and Biotechnology, vol. 8, no. 2, pp. 129–133, 1998.
[39]
K. E. Hammel, B. Kalyanaraman, and T. K. Kirk, “Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase,” Journal of Biological Chemistry, vol. 261, no. 36, pp. 16948–16952, 1986.
[40]
J. A. Field, R. H. Vledder, J. G. Van Zelst, and W. H. Rulkens, “The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: water mixtures,” Enzyme and Microbial Technology, vol. 18, no. 4, pp. 300–308, 1996.
[41]
R. Vazquez-Duhalt, D. W. S. Westlake, and P. M. Fedorak, “Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents,” Applied and Environmental Microbiology, vol. 60, no. 2, pp. 459–466, 1994.
[42]
K. E. Hammel, B. Green, and Wen Zhi Gai, “Ring fission of anthracene by a eukaryote,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 23, pp. 10605–10608, 1991.
[43]
C. Johannes, A. Majcherczyk, and A. Hüttermann, “Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds,” Applied Microbiology and Biotechnology, vol. 46, no. 3, pp. 313–317, 1996.
[44]
P. J. Collins, M. J. J. Kotterman, J. A. Field, and A. D. W. Dobson, “Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor,” Applied and Environmental Microbiology, vol. 62, no. 12, pp. 4563–4567, 1996.
[45]
J. B. Sutherland, A. L. Selby, J. P. Freeman, F. E. Evans, and C. E. Cerniglia, “Metabolism of phenanthrene by Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 57, no. 11, pp. 3310–3316, 1991.
[46]
S. Masaphy, D. Levanon, Y. Henis, K. Venkateswarlu, and S. L. Kelly, “Evidence for cytochrome P-450 and P-450-mediated benzol[a]pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium,” FEMS Microbiology Letters, vol. 135, no. 1, pp. 51–55, 1996.
[47]
M. J. J. Kotterman, H.-J. Rietberg, A. Hage, and J. A. Field, “Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants,” Biotechnology and Bioengineering, vol. 57, no. 2, pp. 220–227, 1998.
[48]
C. Novotny, P. Erbanová, T. Cajthaml, N. Rothschild, C. Dosoretz, and V. Sasek, “Irpex lacteus, a white rot fungus applicable to water and soil bioremediation,” Applied Microbiology and Biotechnology, vol. 54, no. 6, pp. 850–853, 2000.
[49]
H. G. Song, “Comparison of pyrene biodegradation by white rot fungi,” World Journal of Microbiology and Biotechnology, vol. 15, no. 6, pp. 669–672, 1999.
[50]
T. Cajthaml, P. Erbanová, V. Sasek, and M. Moeder, “Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus,” Chemosphere, vol. 64, no. 4, pp. 560–564, 2006.
[51]
S. D. Haemmerli, M. S. A. Leisola, D. Sanglard, and A. Fiechter, “Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase,” Journal of Biological Chemistry, vol. 261, no. 15, pp. 6900–6903, 1986.
[52]
H. G. Song, “Biodegradation of aromatic hydrocarbons by several white-rot fungi,” Journal of Microbiology, vol. 35, no. 1, pp. 66–71, 1997.
[53]
S. W. Dhawale, S. S. Dhawale, and D. Dean-Ross, “Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions,” Applied and Environmental Microbiology, vol. 58, no. 9, pp. 3000–3006, 1992.
[54]
K. E. Hammel, W. Z. Gai, B. Green, and M. A. Moen, “Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 6, pp. 1832–1838, 1992.
[55]
D. Ning, H. Wang, C. Ding, and H. Lu, “Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions,” Biodegradation, vol. 21, no. 6, pp. 889–901, 2010.
[56]
H. Lee, Y. S. Choi, M. J. Kim et al., “Degradation ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white-rot fungi,” Folia Microbiologica, vol. 55, no. 5, pp. 447–453, 2010.
[57]
K. Chupungars, P. Rerngsamran, and S. Thaniyavarn, “Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation,” International Biodeterioration and Biodegradation, vol. 63, no. 1, pp. 93–99, 2009.
[58]
W. T. E. Ting, S. Y. Yuan, S. D. Wu, and B. V. Chang, “Biodegradation of phenanthrene and pyrene by Ganoderma lucidum,” International Biodeterioration and Biodegradation, vol. 65, no. 1, pp. 238–242, 2011.
[59]
A. Schützendübel, A. Majcherczyk, C. Johannes, and A. Hüttermann, “Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta,” International Biodeterioration and Biodegradation, vol. 43, no. 3, pp. 93–100, 1999.
[60]
B. R. M. Vyas, S. Bakowski, V. Sasek, and M. Matucha, “Degradation of anthracene by selected white rot fungi,” FEMS Microbiology Ecology, vol. 14, no. 1, pp. 65–70, 1994.
[61]
L. Levin, A. Viale, and A. Forchiassin, “Degradation of organic pollutants by the white rot basidiomycete Trametes trogii,” International Biodeterioration and Biodegradation, vol. 52, no. 1, pp. 1–5, 2003.
[62]
T. Cajthaml, P. Erbanová, A. Kollmann, C. Novotny, V. Sasek, and C. Mougin, “Degradation of PAHs by ligninolytic enzymes of Irpex lacteus,” Folia Microbiologica, vol. 53, no. 4, pp. 289–294, 2008.
[63]
G. Gramss, B. Kirsche, K. D. Voigt, T. Günther, and W. Fritsche, “Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes,” Mycological Research, vol. 103, no. 8, pp. 1009–1018, 1999.
[64]
N. N. Pozdnyakova, S. V. Nikiforova, O. E. Makarov, and O. V. Turkovskaya, “Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1,” Applied Biochemistry and Microbiology, vol. 47, no. 5, pp. 543–548, 2011.
[65]
S. V. Nikiforova, N. N. Pozdnyakova, and O. V. Turkovskaya, “Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1,” Current Microbiology, vol. 58, no. 6, pp. 554–558, 2009.
[66]
A. Jager, S. Croan, and T. K. Kirk, “Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 50, no. 5, pp. 1274–1278, 1985.
[67]
R. Y. Wang, J. X. Liu, H. L. Huang, Z. Yu, X. M. Xu, and G. M. Zeng, “Effect of rhamnolipid on the enzyme production of two species of lignin-degrading fungi,” Journal of Hunan University Natural Sciences, vol. 35, no. 10, pp. 70–74, 2008.
[68]
S. B?hmer, K. Messner, and E. Srebotnik, “Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids,” Biochemical and Biophysical Research Communications, vol. 244, no. 1, pp. 233–238, 1998.
[69]
N. N. Pozdnyakova, J. Rodakiewicz-Nowak, O. V. Turkovskaya, and J. Haber, “Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators,” Enzyme and Microbial Technology, vol. 39, no. 6, pp. 1242–1249, 2006.
[70]
V. Sasek, T. Cajthaml, and M. Bhatt, “Use of fungal technology in soil remediation: a case study,” Water, Air, and Soil Pollution, vol. 3, no. 3, pp. 5–14, 2003.
[71]
C. Cripps, J. A. Bumpus, and S. D. Aust, “Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 56, no. 4, pp. 1114–1118, 1990.
[72]
P. Morgan, S. T. Lewis, and R. J. Watkinson, “Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds,” Applied Microbiology and Biotechnology, vol. 34, no. 5, pp. 693–696, 1991.
[73]
D. P. Barr and S. D. Aust, “Mechanisms white rot fungi use to degrade pollutants,” Environmental Science and Technology, vol. 28, no. 2, pp. 78A–87A, 1994.
[74]
C. A. Reddy, “The potential for white-rot fungi in the treatment of pollutants,” Current Opinion in Biotechnology, vol. 6, no. 3, pp. 320–328, 1995.
[75]
J. M. Bollag, H. L. Chu, M. A. Rao, and L. Gianfreda, “Enzymatic oxidative transformation of chlorophenol mixtures,” Journal of Environmental Quality, vol. 32, no. 1, pp. 63–69, 2003.
[76]
H. Hou, J. Zhou, J. Wang, C. Du, and B. Yan, “Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye,” Process Biochemistry, vol. 39, no. 11, pp. 1415–1419, 2004.
[77]
R. T. Lamar and D. M. Dietrich, “In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp.,” Applied and Environmental Microbiology, vol. 56, no. 10, pp. 3093–3100, 1990.
[78]
A. Khadrani, F. Seigle-Murandi, R. Steiman, and T. Vroumsia, “Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil,” Chemosphere, vol. 38, no. 13, pp. 3041–3050, 1999.
[79]
A. Kubátová, P. Erbanová, I. Eichlerová, L. Homolka, F. Nerud, and V. Sasek, “PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil,” Chemosphere, vol. 43, no. 2, pp. 207–215, 2001.
[80]
M. Bhatt, T. Cajthaml, and V. Sasek, “Mycoremediation of PAH-contaminated soil,” Folia Microbiologica, vol. 47, no. 3, pp. 255–258, 2002.
[81]
L. Valentín, G. Feijoo, M. T. Moreira, and J. M. Lema, “Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi,” International Biodeterioration and Biodegradation, vol. 58, no. 1, pp. 15–21, 2006.
[82]
L. Valentín, T. A. Lu-Chau, C. López, G. Feijoo, M. T. Moreira, and J. M. Lema, “Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55,” Process Biochemistry, vol. 42, no. 4, pp. 641–648, 2007.
[83]
K. T. Steffen, S. Schubert, M. Tuomela, A. Hatakka, and M. Hofrichter, “Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi,” Biodegradation, vol. 18, no. 3, pp. 359–369, 2007.
[84]
F. Acevedo, L. Pizzul, M. D. P. Castillo, R. Cuevas, and M. C. Diez, “Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 212–219, 2011.
[85]
E. Borràs, G. Caminal, M. Sarrà, and C. Novotny, “Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil,” Soil Biology and Biochemistry, vol. 42, no. 12, pp. 2087–2093, 2010.
[86]
E. J. George and R. D. Neufeld, “Degradation of fluorene in soil by fungus Phanerochaete chrysosporium,” Biotechnology and Bioengineering, vol. 33, no. 10, pp. 1306–1310, 1989.
[87]
M. Wolter, F. Zadrazil, R. Martens, and M. Bahadir, “Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate,” Applied Microbiology and Biotechnology, vol. 48, no. 3, pp. 398–404, 1997.
[88]
H. O. Zebulun, O. S. Isikhuemhen, and H. Inyang, “Decontamination of anthracene-polluted soil through white rot fungus-induced biodegradation,” Environmentalist, vol. 31, no. 1, pp. 11–19, 2011.
[89]
P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006.
[90]
A. Anastasi, T. Coppola, V. Prigione, and G. C. Varese, “Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases,” Journal of Hazardous Materials, vol. 165, no. 1-3, pp. 1229–1233, 2009.
[91]
E. Rodríguez, O. Nuero, F. Guillén, A. T. Martínez, and M. J. Martínez, “Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase,” Soil Biology and Biochemistry, vol. 36, no. 6, pp. 909–916, 2004.
[92]
U. Sack and W. Fritsche, “Enhancement of pyrene mineralization in soil by wood-decaying fungi,” FEMS Microbiology Ecology, vol. 22, no. 1, pp. 77–83, 1997.
[93]
C. Novotny, P. Erbanová, V. ?a?ek et al., “Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi,” Biodegradation, vol. 10, no. 3, pp. 159–168, 1999.
[94]
F. Acevedo, L. Pizzul, M. Castillo et al., “Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor,” Chemosphere, vol. 80, no. 3, pp. 271–278, 2010.
[95]
G. Eibes, T. Cajthaml, M. T. Moreira, G. Feijoo, and J. M. Lema, “Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone,” Chemosphere, vol. 64, no. 3, pp. 408–414, 2006.
[96]
T. Günther, U. Sack, M. Hofrichter, and M. L?tz, “Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases,” Journal of Basic Microbiology, vol. 38, no. 2, pp. 113–122, 1998.
[97]
Y. Wang, R. Vasquez-Duhalt, and M. A. Pickard, “Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese,” Canadian Journal of Microbiology, vol. 49, no. 11, pp. 675–682, 2003.
[98]
D. C. Bressler, P. M. Fedorak, and M. A. Pickard, “Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica,” Biotechnology Letters, vol. 22, no. 14, pp. 1119–1125, 2000.
[99]
H. Punnapayak, S. Prasongsuk, K. Messner, K. Danmek, and P. Lotrakul, “Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase from a tropical white rot fungus Ganoderma lucidum,” African Journal of Biotechnology, vol. 8, no. 21, pp. 5897–5900, 2009.
[100]
N. N. Pozdnyakova, J. Rodakiewicz-Nowak, O. V. Turkovskaya, and J. Haber, “Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1,” Journal of Molecular Catalysis B, vol. 41, no. 1-2, pp. 8–15, 2006.
[101]
R. Rama, C. Mougin, F. D. Boyer, A. Kollmann, C. Malosse, and J. C. Sigoillot, “Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus,” Biotechnology Letters, vol. 20, no. 12, pp. 1101–1104, 1998.
[102]
C. Johannes, A. Majcherczyk, and A. Hüttermann, “Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system,” Journal of Biotechnology, vol. 61, no. 2, pp. 151–156, 1998.
[103]
A. Majcherczyk, C. Johannes, and A. Hüttermann, “Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor,” Enzyme and Microbial Technology, vol. 22, no. 5, pp. 335–341, 1998.
[104]
A. I. Ca?as, M. Alcalde, F. Plou, M. J. Martínez, A. Martínez, and S. Camarero, “Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil,” Environmental Science and Technology, vol. 41, no. 8, pp. 2964–2971, 2007.
[105]
C. Johannes and A. Majcherczyk, “Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 524–528, 2000.
[106]
D. W. S. Wong, “Structure and action mechanism of ligninolytic enzymes,” Applied Biochemistry and Biotechnology, vol. 157, no. 2, pp. 174–209, 2009.
[107]
D. Sanglard, M. S. A. Leisola, and A. Fiechter, “Role of extracellular ligninases in biodegradation of benzo(a)pyrene by Phanerochaete chrysosporium,” Enzyme and Microbial Technology, vol. 8, no. 4, pp. 209–212, 1986.
[108]
B. Valderrama, M. Ayala, and R. Vazquez-Duhalt, “Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes,” Chemistry and Biology, vol. 9, no. 5, pp. 555–565, 2002.
[109]
K. S. Hildén, R. Bortfeldt, M. Hofrichter, A. Hatakka, and T. K. Lundell, “Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia,” Microbiology, vol. 154, no. 8, pp. 2371–2379, 2008.