全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2007 

Anisotropy and magnetization reversal with chains of submicron-sized Co hollow spheres

DOI: 10.1103/PhysRevB.75.214418

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnetic properties with chains of hcp Co hollow spheres have been studied. The diameter of the spheres ranges from 500 to 800 nm, with a typical shell thickness of about 60 nm. The shell is polycrystalline with an average crystallite size of 20 to 35 nm. The blocking temperature determined by the zero-field-cooling MZFC(T) measurement at H = 90 Oe is about 325 K. The corresponding effective anisotropy is determined as, Keff = 4.6*10^4 J/m^3. In addition, the blocking temperature and the effective anisotropy determined by the analysis on HC(T) are 395 K and 5.7*10^4 J/m^3, respectively. The experimentally determined anisotropy is smaller by one order of magnitude than the magnetocrystalline anisotropy of the bulk hcp Co, which is about 3 to 5*10^5 J/m^3. A further analysis on HC(T) shows that the magnetization reversal follows a nucleation rotational mode with an effective switching volume, V* = 2.3*10^3 nm^3. The corresponding effective diameter is calculated as 16.4 nm. It is slightly larger than the coherence length of Co, about 15 nm. The possible reason for the much reduced magnetic anisotropy is discussed briefly.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133