This study of gaze patterns in very young children with autism and their parents included 23 cases (with 16 fathers and 19 mothers) and 46 controls (with 14 fathers and 28 mothers). Children (mean age years) with autism met DSM-IV and ADOS-G diagnostic criteria. The participants’ gaze patterns were recorded while they viewed four simple movies that did not feature people. In children, severity of autism is related to spending more time watching irrelevant regions in one of the four movies. The mothers of children with autism showed an atypical pattern for three movies, whereas the fathers of children with autism did not show an atypical gaze pattern. The gaze pattern of the mothers was positively correlated with that of their children. The atypical viewing pattern of autistic individuals appears not to be restricted to people and social situations but is also seen in other situations, suggesting that there is a perceptual broad autism phenotype. 1. Introduction Autism spectrum disorders (ASDs) are a group of behaviorally defined disorders with impaired social interaction as a key feature, along with impairments in verbal and nonverbal communication and stereotyped and rigid patterns of behavior. There is evidence that these behavioral characteristics are accompanied by an atypical style of perception that is unique to autism [1–3]. Unlike individuals with other brain disorders, people with autism perform better than controls on tasks that involve the perception of low-level stimuli, such as discriminating visual luminance contrasts [2] and pure tones [3], but have a poorer performance on tasks involving complex stimuli [4]. The asymmetric perceptual pattern in autism has been explained using different but converging theoretical frameworks, such as the Weak Central Coherence Theory [5] and the Enhanced Perceptual Functioning model [6]. The main theme of these theoretical frameworks is that people with autism have difficulty (or are less inclined to) processing complex dynamic stimuli but are superior in processing simple static stimuli, leading to an atypical perceptual style. This atypical perceptual style may lead to difficulties in everyday life [7] if people with autism fail to identify and pay attention to relevant aspects of their environment. Failure to notice these stimuli could lead to different experiences and subsequently to different cognitive processes and behaviors during development [8], which in turn could lead to different perceptual styles, thereby forming a vicious cycle. Klin and colleagues argue that different perceptual preferences
References
[1]
F. Samson, L. Mottron, B. Jemel, P. Belin, and V. Ciocca, “Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 65–76, 2006.
[2]
A. Bertone, L. Mottron, P. Jelenic, and J. Faubert, “Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity,” Brain, vol. 128, no. 10, pp. 2430–2441, 2005.
[3]
A. Bonnel, L. Mottron, I. Peretz, M. Trudel, E. Gallun, and A. M. Bonnel, “Enhanced pitch sensitivity in individuals with autism: a signal detection analysis,” Journal of Cognitive Neuroscience, vol. 15, no. 2, pp. 226–235, 2003.
[4]
W. B. Groen, L. van Orsouw, N. Huurne et al., “Intact spectral but abnormal temporal processing of auditory stimuli in autism,” Journal of Autism and Developmental Disorders, vol. 39, no. 5, pp. 742–750, 2009.
[5]
F. G. Happé, “Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 37, no. 7, pp. 873–877, 1996.
[6]
L. Mottron, M. Dawson, I. Soulières, B. Hubert, and J. Burack, “Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 27–43, 2006.
[7]
A. Klin, W. Jones, R. Schultz, F. Volkmar, and D. Cohen, “Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism,” Archives of General Psychiatry, vol. 59, no. 9, pp. 809–816, 2002.
[8]
A. Klin, W. Jones, R. Schultz, and F. Volkmar, “The enactive mind, or from actions to cognition: lessons from autism,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1430, pp. 345–360, 2003.
[9]
T. Nakano, K. Tanaka, Y. Endo et al., “Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour,” Proceedings of the Royal Society B, vol. 277, no. 1696, pp. 2935–2943, 2010.
[10]
R. J. Landa, K. C. Holman, and E. Garrett-Mayer, “Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders,” Archives of General Psychiatry, vol. 64, no. 7, pp. 853–864, 2007.
[11]
K. Chawarska and F. Shic, “Looking but not seeing: atypical visual scanning and recognition of faces in 2 and 4-Year-old children with Autism spectrum disorder,” Journal of Autism and Developmental Disorders, vol. 39, no. 12, pp. 1663–1672, 2009.
[12]
K. Chawarska, F. Volkmar, and A. Klin, “Limited attentional bias for faces in toddlers with autism spectrum disorders,” Archives of General Psychiatry, vol. 67, no. 2, pp. 178–185, 2010.
[13]
T. Falck-Ytter, E. Fernell, C. Gillberg, and C. Von Hofsten, “Face scanning distinguishes social from communication impairments in autism,” Developmental Science, vol. 13, no. 6, pp. 864–875, 2010.
[14]
W. Jones, K. Carr, and A. Klin, “Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder,” Archives of General Psychiatry, vol. 65, no. 8, pp. 946–954, 2008.
[15]
G. S. Young, N. Merin, S. J. Rogers, and S. Ozonoff, “Gaze behavior and affect at 6 months: predicting clinical outcomes and language development in typically developing infants and infants at risk for autism,” Developmental Science, vol. 12, no. 5, pp. 798–814, 2009.
[16]
A. Klin and W. Jones, “Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism,” Developmental Science, vol. 11, no. 1, pp. 40–46, 2008.
[17]
A. Klin, D. J. Lin, P. Gorrindo, G. Ramsay, and W. Jones, “Two-year-olds with autism orient to non-social contingencies rather than biological motion,” Nature, vol. 459, no. 7244, pp. 257–261, 2009.
[18]
M. Losh and J. Piven, “Social-cognition and the broad autism phenotype: identifying genetically meaningful phenotypes,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 48, no. 1, pp. 105–112, 2007.
[19]
M. Losh, R. Adolphs, M. D. Poe et al., “Neuropsychological profile of autism and the broad autism phenotype,” Archives of General Psychiatry, vol. 66, no. 5, pp. 518–526, 2009.
[20]
K. M. Dalton, B. M. Nacewicz, A. L. Alexander, and R. J. Davidson, “Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism,” Biological Psychiatry, vol. 61, no. 4, pp. 512–520, 2007.
[21]
R. Adolphs, M. L. Spezio, M. Parlier, and J. Piven, “Distinct face-processing strategies in parents of autistic children,” Current Biology, vol. 18, no. 14, pp. 1090–1093, 2008.
[22]
N. Merin, G. S. Young, S. Ozonoff, and S. J. Rogers, “Visual fixation patterns during reciprocal social interaction distinguish a subgroup of 6-month-old infants at-risk for autism from comparison infants,” Journal of Autism and Developmental Disorders, vol. 37, no. 1, pp. 108–121, 2007.
[23]
I. I. Gottesman and T. D. Gould, “The endophenotype concept in psychiatry: etymology and strategic intentions,” American Journal of Psychiatry, vol. 160, no. 4, pp. 636–645, 2003.
[24]
C. Lord, S. Risi, L. Lambrecht et al., “The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism,” Journal of Autism and Developmental Disorders, vol. 30, no. 3, pp. 205–223, 2000.
[25]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 1994.
[26]
E. Schopler, Individualized Assessment and Treatment for Autistic and Developmentally Disabled Children: Psychoeducational Profile-Revised (Pep-R), Pro-Ed, Austin, Tex, USA, 1990.
[27]
T. M. Achenbach, Manual for the Child Behavior Checklist, University of Vermont, Burlington, Mass, USA, 1991.
[28]
E. Mullen, Mullen Scales of Early Learning, American Guidance Service, Circle Pines, Minn, USA, 1995.
[29]
S. Baron-Cohen, S. Wheelwright, R. Skinner, J. Martin, and E. Clubley, “The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians,” Journal of Autism and Developmental Disorders, vol. 31, no. 1, pp. 5–17, 2001.
[30]
A. Senju and M. H. Johnson, “Atypical eye contact in autism: models, mechanisms and development,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 8, pp. 1204–1214, 2009.
[31]
A. Klin, W. Jones, R. Schultz, F. Volkmar, and D. Cohen, “Defining and quantifying the social phenotype in autism,” American Journal of Psychiatry, vol. 159, no. 6, pp. 895–908, 2002.
[32]
D. Neumann, M. L. Spezio, J. Piven, and R. Adolphs, “Looking you in the mouth: abnormal gaze in autism resulting from impaired top-down modulation of visual attention,” Social Cognitive and Affective Neuroscience, vol. 1, no. 3, pp. 194–202, 2006.
[33]
A. M. Scheeren and J. E. A. Stauder, “Broader autism phenotype in parents of autistic children: reality or myth?” Journal of Autism and Developmental Disorders, vol. 38, no. 2, pp. 276–287, 2008.