Autism spectrum disorders (ASDs) are neurobehavioral disorders characterized by abnormalities in three behavioral domains including social interaction, impaired communication, and repetitive stereotypic behaviors. ASD affects approximately 1% of children and is on the rise with significant genetic mechanisms underlying these disorders. We review the current understanding of the role of genetic and metabolic factors contributing to ASD with the use of new genetic technology. Fifty percent is diagnosed with chromosomal abnormalities, small DNA deletions/duplications, single-gene conditions, or metabolic disturbances. Genetic evaluation is discussed along with psychiatric treatment and approaches for selection of medication to treat associated challenging behaviors or comorbidities seen in ASD. We emphasize the importance of prioritizing treatment based on target symptom clusters and in what order for individuals with ASD, as the treatment may vary from patient to patient. 1. Introduction Classical autism which was first described in 1943 [1] belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). These neurobehavioral disorders are characterized by abnormalities in three behavioral domains including disturbances in social interaction, impaired communication skills, and repetitive stereotypic behaviors with an onset recognized prior to 3 years of age [2]. ASD includes not only classical autism (autistic disorder) but also asperger disorder (high functioning) and pervasive developmental disorder not otherwise specified (PDD-NOS) [2–6]. The American Academy of Pediatrics recommends autism screening of all infants and toddlers for early identification and intervention by at least 12 months of age and again at 24 months. Several validated rating scales are helpful in establishing the diagnosis, including Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS), in combination with clinical presentation [7–9]. Specialist assessments and work-ups are available usually at university hospitals and university-affiliated programs and ideally should include regular visits at least annually depending on the chief complaint with a psychologist specializing in ASD, a psychiatrist to examine for treatable symptom presentations such as inattention, a neurologist for seizure assessment and brain imaging to exclude anatomical abnormalities, and a clinical geneticist to identify a known genetic syndrome causing autism, genetic counseling issues, and appropriate genetic testing for family members (now or
References
[1]
L. Kanner, “Autistic psychopathy in childhood,” Nervous Child, vol. 2, pp. 217–250, 1943.
[2]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association Press, Washington, DC, USA, 4th edition, 2000.
[3]
C. Lord, S. Risi, L. Lambrecht et al., “The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism,” Journal of Autism and Developmental Disorders, vol. 30, no. 3, pp. 205–223, 2000.
[4]
C. P. Johnson, S. M. Myers, P. H. Lipkin et al., “Identification and evaluation of children with autism spectrum disorders,” Pediatrics, vol. 120, no. 5, pp. 1183–1215, 2007.
[5]
J. R. Hughes, “Update on autism: a review of 1300 reports published in 2008,” Epilepsy and Behavior, vol. 16, no. 4, pp. 569–589, 2009.
[6]
D. Polsek, T. Jagatic, M. Cepanec, P. R. Hof, and G. Simic, “Recent developments in neuropathology of Autism Spectrum disorders,” Translational Neuroscience, vol. 2, pp. 256–264, 2011.
[7]
A. Le Couteur, C. Lord, and M. Ruter, Autism Diagnostic Interview-Revised (ADI-R), Western Psychological Services, Los Angeles, Calif, USA, 2003.
[8]
C. Lord, P. C. DiLavore, and S. Risi, Autism Diagnostic Observation Schedule (ADOS), Western Psychological Services, Los Angeles, Calif, USA, 2003.
[9]
J. N. Constantino, S. A. Davis, R. D. Todd et al., “Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the Autism Diagnostic Interview-Revised,” Journal of Autism and Developmental Disorders, vol. 33, no. 4, pp. 427–433, 2003.
[10]
I. Rapin, “Autistic regression and disintegrative disorder: how important the role of epilepsy?” Seminars in Pediatric Neurology, vol. 2, no. 4, pp. 278–285, 1995.
[11]
J. H. Miles and R. E. Hillman, “Value of a clinical morphology examination in autism,” American Journal of Medical Genetics, vol. 91, pp. 245–253, 2000.
[12]
E. Fombonne, B. Rogé, J. Claverie, S. Courty, and J. Frémolle, “Microcephaly and macrocephaly in autism,” Journal of Autism and Developmental Disorders, vol. 29, no. 2, pp. 113–119, 1999.
[13]
J. H. Miles, “Autism spectrum disorders-A genetics review,” Genetics in Medicine, vol. 13, no. 4, pp. 278–294, 2011.
[14]
J. E. Lainhart, J. Piven, M. Wzorek et al., “Macrocephaly in children and adults with autism,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 36, no. 2, pp. 282–290, 1997.
[15]
J. H. Miles, L. L. Hadden, T. N. Takahashi, et al., “Head circumference is an independent clinical finding associated with autism,” American Journal of Medical Genetics, vol. 95, pp. 339–350, 2000.
[16]
M. G. Butler, M. J. Dazouki, X. P. Zhou et al., “Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations,” Journal of Medical Genetics, vol. 42, no. 4, pp. 318–321, 2005.
[17]
R. A. Carper and E. Courchesne, “Inverse correlation between frontal lobe and cerebellum sizes in children with autism,” Brain, vol. 123, no. 4, pp. 836–844, 2000.
[18]
R. A. Carper, P. Moses, Z. D. Tigue, and E. Courchesne, “Cerebral lobes in autism: early hyperplasia and abnormal age effects,” NeuroImage, vol. 16, no. 4, pp. 1038–1051, 2002.
[19]
S. Mueller, D. Keeser, M. F. Reiser, et al., “Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism,” AJNR American Journal of Neuroradiology. In press.
[20]
R. C. Philip, M. R. Dauvermann, H. C. Whalley, et al., “A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders,” Neuroscience & Biobehavioral Reviews, vol. 36, no. 2, pp. 901–942, 2012.
[21]
C. Rice, “Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006,” Morbidity and Mortality Weekly Report, vol. 58, no. 10, pp. 1–20, 2009.
[22]
J. A. Hellings, “Treatment of comorbid disorders in autism: which regimens are effective and for whom?” MEDSCAPE Mental Health Website, 2000, http://www.medscape.com/.
[23]
L. Lecavalier, “Behavioral and emotional problems in young people with pervasive developmental disorders: relative prevalence, effects of subject characteristics, and empirical classification,” Journal of Autism and Developmental Disorders, vol. 36, no. 8, pp. 1101–1114, 2006.
[24]
G. E. Herman, N. Henninger, K. Ratliff-Schaub, M. Pastore, S. Fitzgerald, and K. L. McBride, “Genetic testing in autism: how much is enough?” Genetics in Medicine, vol. 9, no. 5, pp. 268–274, 2007.
[25]
E. R. Ritvo, L. B. Jorde, A. Mason-Brothers et al., “The UCLA-University of Utah epidemiologic survey of autism: recurrence risk estimates and genetic counseling,” American Journal of Psychiatry, vol. 146, no. 8, pp. 1032–1036, 1989.
[26]
P. Bolton, H. Macdonald, A. Pickles et al., “A case-control family history study of autism,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 35, no. 5, pp. 877–900, 1994.
[27]
G. B. Schaefer and R. E. Lutz, “Diagnostic yield in the clinical genetic evaluation of autism spectrum disorders,” Genetics in Medicine, vol. 8, no. 9, pp. 549–556, 2006.
[28]
S. Chakrabarti and E. Fombonne, “Pervasive developmental disorders in preschool children,” JAMA, vol. 285, no. 24, pp. 3093–3099, 2001.
[29]
J. Piven, “The biological basis of autism,” Current Opinion in Neurobiology, vol. 7, no. 5, pp. 708–712, 1997.
[30]
S. Dhillon, J. A. Hellings, and M. G. Butler, “Genetics and mitochondrial abnormalities in autism spectrum disorders: a review,” Current Genomics, vol. 12, no. 5, pp. 322–332, 2011.
[31]
R. Holt and A. P. Monaco, “Links between genetics and pathophysiology in the autism spectrum disorders,” EMBO Molecular Medicine, vol. 3, no. 8, pp. 438–450, 2011.
[32]
M. G. Butler and Z. Talebizadeh, “Genetics of autism with emphasis on affected females,” in Progress in Medical Genetics Research, pp. 149–182, Nova Science, Hauppauge, NY, USA, 2006.
[33]
R. J. Schroer, M. C. Phelan, R. C. Michaelis, et al., “Autism and maternally derived aberrations of chromosome 15q,” American Journal of Medical Genetics, vol. 76, pp. 327–336, 1998.
[34]
A. Benvenuto, R. Moavero, R. Alessandrelli, B. Manzi, and P. Curatolo, “Syndromic autism: causes and pathogenetic pathways,” World Journal of Pediatrics, vol. 5, no. 3, pp. 169–176, 2009.
[35]
M. Hempel, N. R. Brugués, J. Wagenstaller et al., “Microdeletion syndrome 16p11.2-p12.2: clinical and molecular characterization,” American Journal of Medical Genetics, Part A, vol. 149, no. 10, pp. 2106–2112, 2009.
[36]
B. A. Fernandez, W. Roberts, B. Chung et al., “Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder,” Journal of Medical Genetics, vol. 47, no. 3, pp. 195–203, 2010.
[37]
Z. Talebizadeh, D. C. Bittel, O. J. Veatch, N. Kibiryeva, and M. G. Butler, “Brief report: non-random X chromosome inactivation in females with autism,” Journal of Autism and Developmental Disorders, vol. 35, no. 5, pp. 675–681, 2005.
[38]
P. H. Patterson, Infectious Behavior: Brain-Immune Connections in Autism, Schizophrenia and Depression, The MIT Press, Cambridge, Mass, USA, 2011.
[39]
G. B. Schaefer and N. J. Mendelsohn, “Clinical genetics evaluation in identifying the etiology of autism spectrum disorders,” Genetics in Medicine, vol. 10, no. 4, pp. 301–305, 2008.
[40]
G. B. Schaefer, L. Starr, D. Pickering, G. Skar, K. Dehaai, and W. G. Sanger, “Array comparative genomic hybridization findings in a cohort referred for an autism evaluation,” Journal of Child Neurology, vol. 25, no. 12, pp. 1498–1503, 2010.
[41]
D. P. Wall, F. J. Esteban, T. F. DeLuca et al., “Comparative analysis of neurological disorders focuses genome-wide search for autism genes,” Genomics, vol. 93, no. 2, pp. 120–129, 2009.
[42]
R. D. Burnside, R. Pasion, F. M. Mikhail et al., “Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay,” Human Genetics, vol. 130, no. 4, pp. 517–528, 2011.
[43]
Y. Shen, K. A. Dies, I. A. Holm et al., “Clinical genetic testing for patients with autism spectrum disorders,” Pediatrics, vol. 125, no. 4, pp. e727–e735, 2010.
[44]
D. T. Miller, Y. Shen, L. A. Weiss et al., “Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders,” Journal of Medical Genetics, vol. 46, no. 4, pp. 242–248, 2009.
[45]
K. Wang, H. Zhang, D. Ma et al., “Common genetic variants on 5p14.1 associate with autism spectrum disorders,” Nature, vol. 459, no. 7246, pp. 528–533, 2009.
[46]
J. T. Glessner, K. Wang, G. Cai et al., “Autism genome-wide copy number variation reveals ubiquitin and neuronal genes,” Nature, vol. 459, no. 7246, pp. 569–573, 2009.
[47]
J. Sebat, B. Lakshmi, D. Malhotra et al., “Strong association of de novo copy number mutations with autism,” Science, vol. 316, no. 5823, pp. 445–449, 2007.
[48]
B. Manzi, A. L. Loizzo, G. Giana Grazia, and P. Curatolo, “Autism and metabolic diseases,” Journal of Child Neurology, vol. 23, no. 3, pp. 307–314, 2008.
[49]
J. R. Weissman, R. I. Kelley, M. L. Bauman et al., “Mitochondrial disease in autism spectrum disorder patients: a cohort analysis,” PLoS One, vol. 3, no. 11, Article ID e3815, 2008.
[50]
D. C. Wallace, “Mitochondrial genes and disease,” Hospital Practice, vol. 21, no. 10, pp. 77–92, 1986.
[51]
D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science, vol. 283, no. 5407, pp. 1482–1488, 1999.
[52]
E. A. Schon and G. Manfredi, “Neuronal degeneration and mitochondrial dysfunction,” The Journal of Clinical Investigation, vol. 111, no. 3, pp. 303–312, 2003.
[53]
S. DiMauro and E. A. Schon, “Mitochondrial respiratory-chain diseases,” The New England Journal of Medicine, vol. 348, no. 26, pp. 2656–2668, 2003.
[54]
J. N. Spelbrink, “Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges,” IUBMB, vol. 62, pp. 19–32, 2010.
[55]
C. Correia, A. M. Coutinho, L. Diogo et al., “Brief report: high frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene,” Journal of Autism and Developmental Disorders, vol. 36, no. 8, pp. 1137–1140, 2006.
[56]
R. Pons, A. L. Andreu, N. Checcarelli et al., “Mitochondrial DNA abnormalities and autistic spectrum disorders,” Journal of Pediatrics, vol. 144, no. 1, pp. 81–85, 2004.
[57]
P. E. Tanguay, “Autism in DSM-5,” American Journal of Psychiatry, vol. 168, pp. 1142–1144, 2011.
[58]
O. I. Lovaas, Teaching Individuals with Developmental Delays: Basic Intervention Techniques, Pro-Ed, Austin, Tex, USA, 2003.
[59]
C. L. Martin, J. A. Duvall, Y. Ilkin et al., “Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism,” American Journal of Medical Genetics, Part B, vol. 144, no. 7, pp. 869–876, 2007.
[60]
K. Bhalla, H. A. Phillips, J. Crawford et al., “The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene,” Journal of Human Genetics, vol. 49, no. 6, pp. 308–311, 2004.
[61]
Research Units in Pediatric Psychopharmacology (RUPP), “Autism Network: randomized, controlled crossover trial of methylphenidate in pervasive development disorder with hyperactivity,” Archives in General Psychiatry, vol. 62, pp. 1266–1327, 2005.
[62]
J. A. Hellings, S. Tanjim, V. Saranga, and A. Thome, “Comorbidity and combination treatments with dextroamphetamine in youth with autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD),” in Proceedings of the 50th Annual Meeting of the New Clinical Drug Evaluation Unit (NCDEU '10), Boca Raton, Fla, USA, 2010.
[63]
D. J. Posey, R. E. Wiegand, J. Wilkerson, M. Maynard, K. A. Stigler, and C. J. McDougle, “Open-label atomoxetine for attention-deficit/hyperactivity disorder symptoms associated with high-functioning pervasive developmental disorders,” Journal of Child and Adolescent Psychopharmacology, vol. 16, no. 5, pp. 599–610, 2006.
[64]
L. E. Arnold, M. G. Aman, A. M. Cook et al., “Atomoxetine for hyperactivity in autism spectrum disorders: placebo-controlled crossover pilot trial,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 45, no. 10, pp. 1196–1205, 2006.
[65]
J. A. Hellings, J. R. Zarcone, R. M. Reese et al., “A crossover study of risperidone in children, adolescents and adults with mental retardation,” Journal of Autism and Developmental Disorders, vol. 36, no. 3, pp. 401–411, 2006.
[66]
Research Units in Pediatric Psychopharmacology (RUPP), “Autism network: risperidone in children with autism and serious behavioral problems,” NEJM, vol. 347, pp. 314–321, 2002.
[67]
J. A. Hellings, D. Boehm, M. G. Butler, H. Yeh, and S. R. Schroeder, “Long-term clinical aripiprazole efficacy and weight changes in youth with developmental disabilities including autism spectrum disorders,” Journal of Mental Health Research in Intellectual Disability, vol. 4, pp. 40–52, 2011.
[68]
C. A. Tamminga, “When is polypharmacy an advantage?” American Journal of Psychiatry, vol. 168, no. 7, article 663, 2011.
[69]
J. A. Hellings, “Psychopharmacology of mood disorders in persons with mental retardation and autism,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 5, pp. 270–278, 1999.
[70]
K. D. Gadow and J. Sverd, “Attention deficit hyperactivity disorder, chronic tic disorder, and methylphenidate,” Advances in Neurology, vol. 99, pp. 197–207, 2006.
[71]
S. Goldstein and A. J. Schwebach, “The comorbidity of pervasive developmental disorder and attention deficit hyperactivity disorder: results of a retrospective chart review,” Journal of Autism and Developmental Disorders, vol. 34, no. 3, pp. 329–339, 2004.
[72]
A. M. Reirsen, “Attention-deficit/hyperactivity disorder (ADHD),” in Autism Spectrum Disorders, D. G. Amaral, G. Dawson, and D. H. Geschwind, Eds., Oxford University Press, New York, NY, USA, 2011.
[73]
R. A. Barkley, K. R. Murphy, and M. Fischer, ADHD in Adults: What the Science Says, Guilford Press, New York, NY, USA, 2007.
[74]
B. L. Handen, C. R. Johnson, and M. Lubetsky, “Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder,” Journal of Autism and Developmental Disorders, vol. 30, no. 3, pp. 245–255, 2000.
[75]
P. Lockhart and B. Guthrie, “Trends in primary care antidepressant prescribing 1995–2007: a longitudinal population database analysis,” British Journal of General Practice, vol. 61, pp. e565–e572, 2011.
[76]
J. A. Hellings, A. Thome, I. Bhatti, P. Smith, and G. Cook-Wiens, “Clinical practice informing drug development targeting ASD,” in Proceedings of the Annual Meeting of the New Clinical Drug Evaluation Unit (NCDEU '11), Boca Raton, Fla, USA, 2011.
[77]
C. T. Gordon, R. C. State, J. E. Nelson, S. D. Hamburger, and J. L. Rapoport, “A double-blind comparison of clomipramine, desipramine, and placebo in the treatment of autistic disorder,” Archives of General Psychiatry, vol. 50, no. 6, pp. 441–447, 1993.
[78]
M. P. Fankhauser, V. C. Karumanchi, M. L. German, A. Yates, and S. D. Karumanchi, “A double-blind, placebo-controlled study of the efficacy of transdermal clonidine in autism,” Journal of Clinical Psychiatry, vol. 53, no. 3, pp. 77–82, 1992.
[79]
C. A. Jaselkis, E. H. Cook, K. E. Fletcher, and B. L. Leventhal, “Clonidine treatment of hyperactive and impulsive children with autistic disorder,” Journal of Clinical Psychopharmacology, vol. 12, no. 5, pp. 322–327, 1992.
[80]
D. J. Posey and C. J. McDougle, “Guanfacine and guanfacine extended release: treatment for ADHD and related disorders,” CNS Drug Reviews, vol. 13, no. 4, pp. 465–474, 2007.
[81]
L. Scahill, M. G. Aman, C. J. McDougle et al., “A prospective open trial of guanfacine in children with pervasive developmental disorders,” Journal of Child and Adolescent Psychopharmacology, vol. 16, no. 5, pp. 589–598, 2006.
[82]
B. P. Taylor and E. Hollander, “Comorbid obsessive-compulsive disorders,” in Autism Spectrum Disorders, D. G. Amaral, G. Dawson, and D. H. Geschwind, Eds., Oxford University Press, New York, NY, USA, 2011.
[83]
K. Williams, D. M. Wheeler, N. Silove, and P. Hazell, “Cochrane review: selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD),” Evidence-Based Child Health, vol. 6, pp. 1044–1078, 2011.
[84]
B. H. King, E. Hollander, L. Sikich et al., “Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism,” Archives of General Psychiatry, vol. 66, no. 6, pp. 583–590, 2009.
[85]
E. H. Cook, R. Rowlett, C. Jaselskis, and B. L. Leventhal, “Fluoxetine treatment of children and adults with autistic disorder and mental retardation,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 31, no. 4, pp. 739–745, 1992.
[86]
J. A. Hellings, L. A. Kelley, W. F. Gabrielli, E. Kilgore, and P. Shah, “Sertraline response in adults with mental retardation and autistic disorder,” Journal of Clinical Psychiatry, vol. 57, no. 8, pp. 333–336, 1996.
[87]
C. J. McDougle, S. T. Naylor, D. J. Cohen, F. R. Volkmar, G. R. Heninger, and L. H. Price, “A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder,” Archives of General Psychiatry, vol. 53, no. 11, pp. 1001–1008, 1996.
[88]
M. A. Lowry, “Unmasking mood disorders: recognizing and measuring symptomatic behaviors,” The Habilitative Mental Healthcare Newsletter, vol. 16, pp. 1–6, 1997.
[89]
J. A. Hellings, “Much improved outcome with gabapentin-divalproex combination in adults with bipolar disorders and developmental disabilities,” Journal of Clinical Psychopharmacology, vol. 26, no. 3, pp. 344–346, 2006.
[90]
R. N. Marcus, R. Owen, L. Kamen et al., “A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 48, no. 11, pp. 1110–1119, 2009.
[91]
E. Hollander, S. Wasserman, E. N. Swanson et al., “A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder,” Journal of Child and Adolescent Psychopharmacology, vol. 16, no. 5, pp. 541–548, 2006.
[92]
R. L. Findling, N. K. McNamara, B. L. Gracious et al., “Quetiapine in nine youths with autistic disorder,” Journal of Child and Adolescent Psychopharmacology, vol. 14, no. 2, pp. 287–294, 2004.
[93]
A. Y. Hardan, R. J. Jou, and B. L. Handen, “Retrospective study of quetiapine in children and adolescents with pervasive developmental disorders,” Journal of Autism and Developmental Disorders, vol. 35, no. 3, pp. 387–391, 2005.
[94]
R. P. Malone, M. A. Delaney, S. B. Hyman, and J. R. Cater, “Ziprasidone in adolescents with autism: an open-label pilot study,” Journal of Child and Adolescent Psychopharmacology, vol. 17, no. 6, pp. 779–790, 2007.
[95]
C. J. McDougle, D. L. Kem, and D. J. Posey, “Case series: use of ziprasidone for maladaptive symptoms in youths with autism,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 41, no. 8, pp. 921–927, 2002.
[96]
J. A. Hellings, J. R. Zarcone, M. G. Valdovinos, R. M. Reese, E. Gaughan, and S. R. Schroeder, “Risperidone-induced prolactin elevation in a prospective study of children, adolescents, and adults with mental retardation and pervasive developmental disorders,” Journal of Child and Adolescent Psychopharmacology, vol. 15, no. 6, pp. 885–892, 2005.
[97]
K. Blankenship, C. A. Erickson, K. A. Stigler, D. J. Posey, and C. J. McDougle, “Psychopharmacological treatment of autism,” in Autism Spectrum Disorders, D. G. Amaral, G. Dawson, and D. H. Geschwind, Eds., Oxford University Press, New York, NY, USA, 2011.
[98]
T. Owley, J. Salt, S. Guter et al., “A prospective, open-label trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders,” Journal of Child and Adolescent Psychopharmacology, vol. 16, no. 5, pp. 517–524, 2006.
[99]
C. A. Erickson, D. J. Posey, K. A. Stigler, J. Mullett, A. R. Katschke, and C. J. McDougle, “A retrospective study of memantine in children and adolescents with pervasive developmental disorders,” Psychopharmacology, vol. 191, no. 1, pp. 141–147, 2007.
[100]
B. H. King, D. M. Wright, B. L. Handen et al., “Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 40, no. 6, pp. 658–665, 2001.
[101]
D. C. Goff, G. Tsai, J. Levitt et al., “A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia,” Archives of General Psychiatry, vol. 56, no. 1, pp. 21–27, 1999.
[102]
D. J. Posey, D. L. Kem, N. B. Swiezy, T. L. Sweeten, R. E. Wiegand, and C. J. McDougle, “A pilot study of D-cycloserine in subjects with autistic disorder,” American Journal of Psychiatry, vol. 161, no. 11, pp. 2115–2117, 2004.
[103]
K. M. Belsito, P. A. Law, K. S. Kirk, R. J. Landa, and A. W. Zimmerman, “Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controlled trial,” Journal of Autism and Developmental Disorders, vol. 31, no. 2, pp. 175–181, 2001.
[104]
K. Horvath, G. Stefanatos, K. N. Sokolski, R. Wachtel, L. Nabors, and J. T. Tildon, “Improved social and language skills after secretin administration in patients with autistic spectrum disorders,” Journal of the Association for Academic Minority Physicians, vol. 9, no. 1, pp. 9–15, 1998.
[105]
P. Sturmey, “Secretin is an ineffective treatment for pervasive developmental disabilities: a review of 15 double-blind randomized controlled trials,” Research in Developmental Disabilities, vol. 26, no. 1, pp. 87–97, 2005.
[106]
M. Campbell, L. T. Anderson, A. M. Small, J. J. Locascio, N. S. Lynch, and M. C. Choroco, “Naltexone in autistic children: a double-blind and placebo-controlled study,” Psychopharmacology Bulletin, vol. 26, no. 1, pp. 130–135, 1990.
[107]
M. Campbell, L. T. Anderson, A. M. Small, P. Adams, N. M. Gonzalez, and M. Ernst, “Naltrexone in autistic children: behavioral symptoms and attentional learning,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 32, no. 6, pp. 1283–1291, 1993.
[108]
S. H. Willemsen-Swinkels, J. K. Buitelaar, F. G. Weijnen, and H. van Engeland, “Placebo-controlled acute dosage naltrexone study in young autistic children,” Psychiatry Research, vol. 58, pp. 203–215, 1995.
[109]
H. M. Feldman, B. K. Kolmen, and A. M. Gonzaga, “Naltrexone and communication skills in young children with autism,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 38, no. 5, pp. 587–593, 1999.
[110]
T. R. Insel and S. A. Daniels, “Future directions: setting priorities to guide the federal research effort,” in Autism Spectrum Disorders, pp. 1361–1368, Oxford University Press, New York, NY, USA, 2011.