全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tuning PID Controller Using Multiobjective Ant Colony Optimization

DOI: 10.1155/2012/536326

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers ( , , and ) by minimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method and a metaheuristic approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant colony optimization has a better control system performance compared with the classic approach and the genetic algorithms. 1. Introduction Proportional-integral-derivative (PID) controllers are frequently used in the control process to regulate the time domain behavior of many different types of dynamic plants. These controllers are extremely popular because of their simple structure and they can usually provide a good closed loop response characteristic. Despite its simple structure it seems so hard to find a proper PID controller [1]. Considering this problem, various methods have been proposed to tune these parameters. Ziegler-Nichols tuning method is the most standard one but it is often difficult to find optimal PID parameters with these methods. Therefore many optimization methods are developed to tune the PID controllers such as fuzzy logic [2, 3], neural network [4], neural-fuzzy logic [5], immune algorithm [6], simulated annealing [7], and pattern recognition [8]. In addition, we have many other optimum tuning PID methods based on many random search methods such as genetic algorithm (GA) [9, 10], particle swarm optimization [11], and ant colony optimization [12]. In this work, we developed the problem of design PID controllers as a multiobjective optimization problem taking in consideration the ant colony optimization algorithm (ACO). Researchers have reported the capacity of ACO to efficiently search for and locate an optimum solution. This method was mainly inspired by the fact that ants are able to find the shortest route between their nest and a food source. Ant colony optimization (ACO) [13, 14] is a recently developed metaheuristic approach for solving hard combinatorial optimization problems such as the travelling salesman problem TSP [15], quadratic assignment problem [16], graph coloring problems [17], hydroelectric generation scheduling problems [18], vehicle routing [19], sequential ordering, scheduling [20],

References

[1]  A. Oonsivilai and P. Pao-La-Or, “Application of adaptive tabu search for optimum PID controller tuning AVR system,” WSEAS Transactions on Power Systems, vol. 3, no. 6, pp. 495–506, 2008.
[2]  S. Tzafestas and N. P. Papanikolopoulos, “Incremetal fuzzy expert PID control,” IEEE Transactions on Industrial Electronics, vol. 37, no. 5, pp. 365–371, 1990.
[3]  A. Visioli, “Tuning of PID controllers with fuzzy logic,” IEE Proceedings: Control Theory and Applications, vol. 148, no. 1, pp. 1–8, 2001.
[4]  C. Cao, X. Guo, and Y. Liu, “Research on ant colony neural network PID controller and application,” in Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD '07), pp. 253–258, 2007.
[5]  T. L. Seng, M. B. Khalid, and R. Yusof, “Tuning of a neuro-fuzzy controller by genetic algorithm,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 29, no. 2, pp. 226–236, 1999.
[6]  D. H. Kim, “Tuning of a PID controller using a artificial immune network model and local fuzzy set,” in Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS '01), vol. 5, pp. 2698–2703, 2001.
[7]  G. Zhou and J. D. Birdwell, “Fuzzy logic-based PID autotuner design using simulated annealing,” in Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided, pp. 67–72, 1994.
[8]  P. Wang and D. P. Kwok, “Optimal design of PID process controllers based on genetic algorithms,” Control Engineering Practice, vol. 2, no. 4, pp. 641–648, 1994.
[9]  P. Wang and D. P. Kwok, “Optimal design of PID process controllers based on genetic algorithms,” Control Engineering Practice, vol. 2, no. 4, pp. 641–648, 1994.
[10]  Y. Mitsukura, T. Yamamoto, and M. Kaneda, “A design of self turning PID controllers’using a genetic algorithm,” in Proceedings of the American Control Conference, pp. 1361–1365, San Diego, Calif, USA, 1999.
[11]  S. E. Selvan, S. Subramanian, and S. T. Solomon, “Novel technique for PID tuning by particle swarm optimization,” in Proceedings of the 7th Annual Swarm Users/Researchers Conference (SwarmFest '03), 2003.
[12]  Y. T. Hsiao, C. L. Chuang, and C. C. Chien, “Ant colony optimization for designing of PID controllers,” in Proceedings of the IEEE lntemational Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, 2004.
[13]  M. Dorigo and G. Di Caro, “The ant colony optimization meta-heuristic,” in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds., pp. 11–32, McGraw Hill, London, UK, 1999.
[14]  M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.
[15]  G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications, vol. 840 of Lecture Notes in Computer Science, Springer, Berlin, Germany, 1994.
[16]  T. Stützle and M. Dorigo, “ACO algorithms for the quadratic assignment problem,” in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds., pp. 33–50, McGraw Hill, London, UK, 1999.
[17]  D. Costa and A. Hertz, “Ants can colour graphs,” Journal of the Operational Research Society, vol. 48, no. 3, pp. 295–305, 1997.
[18]  S. J. Huang, “Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches,” IEEE Transactions on Energy Conversion, vol. 16, no. 3, pp. 296–301, 2001.
[19]  L. M. Gambardella, E. D. Taillard, and G. Agazzi, “MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows,” in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds., pp. 63–76, McGraw Hill, London, UK, 1999.
[20]  L. M. Gambardella and M. Dorigo, “An ant colony system hybridized with a new local search for the sequential ordering problem,” INFORMS Journal on Computing, vol. 12, no. 3, pp. 237–255, 2000.
[21]  G. Di Caro and M. Dorigo, “Ant colonies for adaptive routing in packetswitched communications networks,” in Proceedings of the Proceedings of 5th International Conference on Parallel Problem Solving from Nature ( PPSN '98), A. E. Eiben, T. B?ck, M. Schoenauer, and H.-P. Schwefel, Eds., vol. 1498 of Lecture Notes in Computer Science, pp. 673–682, Springer, Berlin, Germany, 1998.
[22]  A. Afshar, A. Kaveh, and O. R. Shoghli, “Multi-objective optimization of time-cost-quality using multi-colony ant algorithm,” Asian Journal Of Civil Engineering, vol. 8, no. 2, pp. 113–124, 2007.
[23]  J. G. Ziegler and N. B. Nichols, “Optimum settlings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759–768, 1942.
[24]  A. Bagis, “Determination of the PID controller parameters by modified genetic algorithm for improved performance,” Journal of Information Science and Engineering, vol. 23, no. 5, pp. 1469–1480, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133