全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effectiveness of Context-Aware Character Input Method for Mobile Phone Based on Artificial Neural Network

DOI: 10.1155/2012/896948

Full-Text   Cite this paper   Add to My Lib

Abstract:

Opportunities and needs are increasing to input Japanese sentences on mobile phones since performance of mobile phones is improving. Applications like E-mail, Web search, and so on are widely used on mobile phones now. We need to input Japanese sentences using only 12 keys on mobile phones. We have proposed a method to input Japanese sentences on mobile phones quickly and easily. We call this method number-Kanji translation method. The number string inputted by a user is translated into Kanji-Kana mixed sentence in our proposed method. Number string to Kana string is a one-to-many mapping. Therefore, it is difficult to translate a number string into the correct sentence intended by the user. The proposed context-aware mapping method is able to disambiguate a number string by artificial neural network (ANN). The system is able to translate number segments into the intended words because the system becomes aware of the correspondence of number segments with Japanese words through learning by ANN. The system does not need a dictionary. We also show the effectiveness of our proposed method for practical use by the result of the evaluation experiment in Twitter data. 1. Introduction Ordinary Japanese sentences are expressed by two kinds of characters, that is, Kana and Kanji. Kana is Japanese phonogramic characters and has about fifty kinds. Kanji is ideographic Chinese characters and has about several thousand kinds. Therefore, we need to use some Kanji input methods in order to input Japanese sentences into computers. A typical method is the Kana-Kanji translation method of nonsegmented Japanese sentences. This method translates nonsegmented Kana sentences into Kanji-Kana mixed sentences. Since one Kana character is generally inputted by combination of a few alphabets, this method needs twenty six keys for the alphabets. Recently, performance of mobile computing devices is greatly improving. We consider that the devices are grouped into two by their quality. One gives importance to easy operation, the other gives importance to good mobility. Mobile phones are usable as mobile computers and belong to the latter group. Their mobility is very good because typical size of them is small. However, a general mobile phone has only 12 keys, which are 0 , 1 , … , 9 , ? , and #, because of the limited size. A growing number of Smartphones, for example, iPhones, Blackberries, and so on, have full QWERTY keyboards. It is not easy to press the intended key because the key size is small. Moreover, a user needs to press a few keys per Kana character since one Kana

References

[1]  C. Kushler, “AAC: using a reduced keyboard,” in Proceedings of the Technology & Persons with Disabilities Conference (CSUN '98), Los Angeles, Calif, USA, March 1998.
[2]  S. Hasan and K. Harbusch, “N-Best hidden Markov model super tagging to improve typing on an ambiguous keyboard,” in Proceedings of Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms, pp. 24–31, Vancouver, BC, Canada, May 2004.
[3]  M. MaMatsuhara, K. Araki, Y. Momouchi, and K. Tochinai, “Evaluation of number-Kanji translation method of non-segmented Japanese sentences using inductive learning with degenerated input,” in Proceedings of the 12th Australian Joint Conference on Artificial Intelligence: Advanced Topics in Artificial Intelligence, vol. 1747 of Lecture Note in Artificial Intelligence, pp. 474–475, Springer, December 1999.
[4]  M. Matsuhara, K. Araki, and K. Tochinai, “Evaluation of number-Kanji translation method using inductive learning on E-mail,” in Proceedings of 3rd IASTED International Conference on Artificial Intelligence and Soft Computing (ASC ’00), pp. 487–493, Alberta, Canada, July 2000.
[5]  K. Tanaka-Ishii, Y. Inutsuka, and M. Takeichi, “Personalization of text entry systems for mobile phones,” in Proceedings of 6th Natural Processing Pacific Rim Symposium, pp. 177–184, Tokyo, Japan, November 2001.
[6]  K. Tanaka-Ishii, “Word-based predictive text entry using adaptive language models,” Natural Language Engineering, vol. 13, no. 1, pp. 51–74, 2007.
[7]  A. Van Den Bosch and T. Bogers, “Efficient context-sensitive word completion for mobile devices,” in Proceedings of the10th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI '08), pp. 465–470, September 2008.
[8]  M. D. Dunlop and M. Montgomery Masters, “Investigating five key predictive text entry with combined distance and key stroke modelling,” Personal and Ubiquitous Computing, vol. 12, no. 8, pp. 589–598, 2008.
[9]  M. Matsuhara and S. Suzuki, “An efficient context-aware character input algorithm for mobile phone based on artificial neural network,” in Proceedings of the 3rd International Conference on Awareness Science and Technology (iCAST '11), pp. 314–318, Dalian, China, September 2011.
[10]  D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in Microstructures of Cognition, vol. 1, pp. 318–362, MIT Press, Cambridge, UK, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133