Conventional mathematical modeling-based approaches are incompetent to solve the electrical power quality problems, as the power system network represents highly nonlinear, nonstationary, complex system that involves large number of inequality constraints. In order to overcome the various difficulties encountered in power system such as harmonic current, unbalanced source current, reactive power burden, active power filter (APF) emerged as a potential solution. This paper proposes the implementation of particle swarm optimization (PSO) and bacterial foraging optimization (BFO) algorithms which are intended for optimal harmonic compensation by minimizing the undesirable losses occurring inside the APF itself. The efficiency and effectiveness of the implementation of two approaches are compared for two different conditions of supply. The total harmonic distortion (THD) in the source current which is a measure of APF performance is reduced drastically to nearly 1% by employing BFO. The results demonstrate that BFO outperforms the conventional and PSO-based approaches by ensuring excellent functionality of APF and quick prevail over harmonics in the source current even under unbalanced supply. 1. Introduction Introduced by Kennedy and Eberhart in the year 1995 [1], particle swarm optimization (PSO) has emerged as a proficient stochastic approach of evolutionary computation. Since then it has been employed in various fields of applications and research and is successful in yielding an optimized solution. This algorithm mimics the social behavior executed by the individuals in a bird flock or fish school while searching for the best food location (global optima). The PSO algorithm neither depends upon the initial condition nor on the gradient information. Since it depends only on the value of objective function, it makes the algorithm computationally less expensive and much simple to implement. The low CPU and memory requirement is another advantage. However, some experimental results show that the local search ability around the optima is very poor though the global search ability of PSO is quite good [2–4]. This results in premature convergence in problems where multiple optima exist and; hence, the performance is degraded. The bacterial foraging optimization (BFO) proposed by Passino in the year 2002 [5] is based on natural selection that tends to eliminate animals with poor foraging strategies. After many generations, poor foraging strategies are eliminated while only the individuals with good foraging strategy survive signifying survival of the fittest.
References
[1]
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia, December 1995.
[2]
P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance differences,” in Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610, New York, NY, USA, 1998.
[3]
R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 611–618, New York, NY, USA, 1998.
[4]
D. Caputo, F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical swarm optimization of multihop routes in wireless sensor networks,” Applied Computational Intelligence and Soft Computing, vol. 2010, Article ID 523943, 14 pages, 2010.
[5]
K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52–67, 2002.
[6]
S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 61–73, 2005.
[7]
S. Mishra and C. N. Bhende, “Bacterial foraging technique-based optimized active power filter for load compensation,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 457–465, 2007.
[8]
A. Biswas, S. Dasgupta, S. Das, and A. Abraham, “A synergy of differential evolution and bacterial foraging optimization for faster global search,” International Journal on Neural and Mass-Parallel Computing and Information Systems, pp. 607–626, 2007.
[9]
Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, Anchorage, Alaska, USA, May 1998.
[10]
B. Singh, K. Al-Haddad, and A. Chandra, “Review of active filters for power quality improvement,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 960–971, 1999.
[11]
H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press/Wiley-Inter-science, NJ, USA, 2007.
[12]
V. Soares, P. Verdelho, and G. D. Marques, “An instantaneous active and reactive current component method for active filters,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 660–669, 2000.
[13]
M. I. M. Montero, E. R. Cadaval, and F. B. González, “Comparison of control strategies for shunt active power filters in three-phase four-wire systems,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 229–236, 2007.
[14]
S. H. Zak, Systems and Control, Oxford University Press, New York, NY, USA, 1st edition, 2003.
[15]
C. A. Smith and A. B. Corripio, Automatic Processes Control, México D.F., México, 1st edition, 1991.