全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

DOI: 10.1155/2012/742461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM) where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate. 1. Introduction Nowadays, multifarious classification techniques are widely used in many signal-processing areas, such as face recognition, road traffic analyze, medical image, weather forecasting, and so forth [1, 2]. It has been considered whether this kind of techniques could serve the purposes of power load monitoring, which is a process for obtaining what appliances are used in the house as well as their individual energy consumption by analyzing changes in the voltage and current. In particular, information about the operating conditions of consumers (such as what appliances are operated and what state they are in) is useful for demand estimation and prediction. In addition, the operating conditions of electrical appliances in modern society clearly reflect consumers’ lifestyles and behavior patterns [3]. Research is being performed on the use of such information for circuit diagnoses, safety confirmation systems for elderly persons living alone [4], demand management, and optimization [5–10], and for other uses [11]. There are mainly two classes of approaches in power monitoring algorithm, including intrusive appliance load monitoring (IALM) and nonintrusive appliance load monitoring (NIALM) [12]. In order to measure consumption, IALM distributes direct sensors at each device or appliance. Although conceptually straightforward and potentially highly accurate, direct sensing is often expensive due to time consuming installation and the

References

[1]  G. Guo, S. Li, and K. Chan, “Face recognition by support vector machines,” in Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 196–201, 2000.
[2]  S. Du and T. Wu, “Support Vector Machines for Regression,” Acta Simulata Systematica Sinica, TP18, CNKI:SUN:XTFZ.0.2003-11-022, 2003.
[3]  S. Inagaki, T. Egami, T. Suzuki, H. Nakamura, and K. Ito, “Nonintrusive appliance load monitoring based on integer programming,” Electrical Engineering in Japan, vol. 174, no. 2, pp. 1386–1392, 2011.
[4]  S. Aoki, M. Onishi, A. Kojima, and K. Fukunaga, “Detection of a solitude senior’s irregular states based on learning and recognizing of behavioral patterns,” IEEJ, vol. 125, pp. 259–265, 2005.
[5]  C. Laughman, K. D. Lee, R. Cox et al., “Advanced nonintrusive monitoring of electric loads,” IEEE Power and Energy Magazine, pp. 56–563, April 2003.
[6]  J. Li, G. Poulton, and G. James, “Agent-based distributed energy management,” in Proceedings of the 20th Australian Joint Conference on Advances in Artificial Intelligence, vol. 4830, pp. 569–578, December 2007.
[7]  J. Li, G. Poulton, and G. James, “Coordination of distributed energy resource agents,” Applied Artificial Intelligence, vol. 24, no. 5, pp. 351–380, 2010.
[8]  Y. Guo, J. Li, and G. James, “Evolutionary optimisation of distributed energy resources,” in Proceedings of the 18th Australian Joint Conference on Advances in Artificial Intelligence, vol. 3809, pp. 1086–1091, Sydney, Australia, December 2005.
[9]  R. Li, J. Li, G. Poulton, and G. James, “Agent-based optimisation systems for electrical load management,” in Proceedings of the 1st International Workshop on Optimisation in Multi-Agent Systems, pp. 60–69, Estoril, Portugual, May 2008.
[10]  J. Li, G. James, and G. Poulton, “Set-points based optimal multi-agent coordination for controlling distributed energy loads,” in Proceedings of the 3rd IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO '09), pp. 265–271, San Francisco, Calif, USA, September 2009.
[11]  J. Li, G. Poulton, G. James, and Y. Guo, “Multiple energy resource agent coordination based on electricity price,” Journal of Distributed Energy Resources, vol. 5, pp. 103–120, 2009.
[12]  G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.
[13]  S. B. Leeb, S. R. Shaw, and J. L. Kirtley, “Transient event detection in spectral envelope estimates for nonintrusive load monitoring,” IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1200–1210, 1995.
[14]  M. C. Ferris and T. S. Munson, “Interior point methods for massive support vector machines,” Tech. Rep. 00-05, Computer Sciences Department, University of Wisconsin, Madison, Wis, USA, 2000.
[15]  C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.
[16]  J. J. Moré and G. Toraldo, “Algorithms for bound constrained quadratic programming problems,” Numerische Mathematik, vol. 55, no. 4, pp. 377–400, 1989.
[17]  O. L. Mangasarian and D. R. Musicant, “Active set support vector machine classifiation,” in Advances in Neural Information Processing Systems, T. Leen, T. Dietterich, and V. Tresp, Eds., vol. 13, pp. 577–583, MIT Press, Cambridge, Mass, USA, 2001.
[18]  J. Li, S. West, and G. Platt, “Power decomposition based on SVM regression,” in Proceedings of the 4th International Conference on Modelling, Identification and Control (ICMIC '12), pp. 1256–1261, Wuhan, China, June 2012.
[19]  A. J. Bijker, X. Xia, and J. Zhang, “Active power residential non-intrusive appliance load monitoring system,” in IEEE AFRICON Conference, pp. 1–6, September 2009.
[20]  H.-H. Chang, K.-L. Chen, Y.-P. Tsai, and W.-J. Lee, “A new measurement method for power signatures of non-intrusive demand monitoring and load identification,” in Proceedings of the 46th IEEE Industry Applications Society Annual Meeting (IAS '11), pp. 1–7, Orlando, Fla, USA, 2011.
[21]  T. Onoda, H. Murata, G. R?tsch, and K.-R. Müller, “Experimental analysis of Support Vector Machines with different kernels based on non-intrusive monitoring data,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '02), vol. 3, pp. 2186–2191, Honolulu, Hawaii, USA, 2002.
[22]  R. Kadouche, B. Chikhaoui, and B. Abdulrazak, “User's behavior study for smart houses occupant prediction,” Annals of Telecommunications, vol. 65, no. 9-10, pp. 539–543, 2010.
[23]  S. R. Gunn, “Support vector machines for classification and regression,” Faculty of Engineering, Science and Mathematics School of Electronics and Computer, University of Southampton, 1998.
[24]  G. L. Grinblat, L. C. Uzal, H. A. Ceccatto, and P. M. Granitto, “Solving nonstationary classification problems with coupled upport vector machines,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 37–51, 2011.
[25]  J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng, “Load signature studypart I: basic concept, structure, and methodology,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 551–560, 2010.
[26]  M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: review and outlook,” IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp. 76–84, 2011.
[27]  J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.
[28]  D. Demigny and T. Kamlé, “A discrete expression of canny's criteria for step edge detector performances evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 11, pp. 1199–1211, 1997.
[29]  F. Truchetet, F. Nicolier, and O. Laligant, “Subpixel edge detection for dimensional control by artificial vision,” Journal of Electronic Imaging, vol. 10, no. 1, pp. 234–239, 2001.
[30]  I. Pitas and A. Venetsanopoulos, “Nonlinear mean filters in image processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 3, pp. 573–584, 1986.
[31]  A. Benazza-Benyahia, J. C. Pesquet, and H. Krim, “A nonlinear diffusion-based three-band filter bank,” IEEE Signal Processing Letters, vol. 10, no. 12, pp. 360–363, 2003.
[32]  M. A. Schulze, “An edge-enhancing nonlinear filter for reducing multiplicative noise,” in Nonlinear Image Processing VIII, E. R. Dougherty and J. Astola, Eds., vol. 3026 of Proceedings of SPIE, pp. 46–56, San Jose, Calif, USA, February 1997.
[33]  H. Hwang and R. A. Haddad, “Multilevel nonlinear filters for edge detection and noise suppression,” IEEE Transactions on Signal Processing, vol. 42, no. 2, pp. 249–258, 1994.
[34]  O. Laligant and F. Truchetet, “A nonlinear derivative scheme applied to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 242–257, 2010.
[35]  L. Jiang, S. Luo, and J. Li, “An approach of household power appliance monitoring based on machine learning,” in Proceedings of the 5th International Conference on Intelligent Computation Technology and Automation (ICICTA '12), pp. 577–580, January 2012.
[36]  T. Joachims, “Making large-scale SVM learning practical,” LS8-Report, University of Dortmund, 1998.
[37]  C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
[38]  A. B. Ji, J. H. Pang, and H. J. Qiu, “Support vector machine for classification based on fuzzy training data,” Expert Systems with Applications, vol. 37, no. 4, pp. 3495–3498, 2010.
[39]  S. Luo, Q. Hu, X. He, J. Li, J. S. Jin, and M. Park, “Automatic liver parenchyma segmentation from abdominal CT images using support vector machines,” in Proceedings of the IEEE/CME International Conference on Complex Medical Engineering (ICME '09), p. 10071, Tempe, Ariz, USA, April 2009.
[40]  L. Jiang, J. Li, S. Luo, and S. West, “Literature review of power disaggregation,” in Proceedings of the IEEE International Conference on Modelling Identification and Control, pp. 38–42, 2011.
[41]  R. Debnath and H. Takahashi, “Kernel selection for the support vector machine,” IEICE Transactions on Information and Systems, vol. E87-D, no. 12, pp. 2903–2904, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133