全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling Chaotic Behavior of Chittagong Stock Indices

DOI: 10.1155/2012/410832

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stock market prediction is an important area of financial forecasting, which attracts great interest to stock buyers and sellers, stock investors, policy makers, applied researchers, and many others who are involved in the capital market. In this paper, a comparative study has been conducted to predict stock index values using soft computing models and time series model. Paying attention to the applied econometric noises because our considered series are time series, we predict Chittagong stock indices for the period from January 1, 2005 to May 5, 2011. We have used well-known models such as, the genetic algorithm (GA) model and the adaptive network fuzzy integrated system (ANFIS) model as soft computing forecasting models. Very widely used forecasting models in applied time series econometrics, namely, the generalized autoregressive conditional heteroscedastic (GARCH) model is considered as time series model. Our findings have revealed that the use of soft computing models is more successful than the considered time series model. 1. Introduction The stock index values play an important role in controlling dynamics of the capital market. As a result, the appropriate prediction of stock index values is a crucial factor for domestic/foreign stock investors, buyers and/or sellers, fund managers, policy makers, applied researchers (who want to improve the model specifications of this index), and many others. Many researchers, for example, [1–4] and others have found that the empirical distribution of stock is significantly nonnormal and nonlinear. Stock market data are also observed in practice chaotic and volatile by nature (e.g., see [5–8]). That is why stock values are hard to predict. Traditionally, the fundamental Box-Jenkins analysis has been the mainstream methodology that is used to predict stock values in applied literature. Due to continual studies of stock market experts, the use of soft computing models (such as artificial neural networks, fuzzy set, evolutionary algorithms, and rough set theory.) have been widely established to forecast stock market. Evidence [9, 10] suggests that the Box-Jenkins approach often fails to predict time series when the behavior of series is chaotic and nonlinear. Thus, soft computing systems have emerged to increase the accuracy of chaotic time series predictions. The reason is that these systems have the potential to provide a viable solution through the versatile approach to self-organization. Thus, in forecasting literatures [11–14], it has been found that soft computing systems yield better results compared to

References

[1]  B. Mandelbrot, “The variation of certain speculative prices,” Journal of Business, vol. 36, pp. 394–419, 1963.
[2]  E. F. Fama, “The behavior of stock market prices,” Journal of Business, vol. 38, pp. 34–105, 1965.
[3]  D. A. Hsu, R. B. Miler, and D. W. Wichern, “On the stable paretian behavior of stock market prices,” Journal of the American Statistical Association, vol. 69, pp. 108–113, 1974.
[4]  D. Kim and S. J. Kon, “Alternative models for the conditional heteroskedasticity of stock returns,” Journal of Business, vol. 67, pp. 563–598, 1994.
[5]  R.F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of UK Inflation,” Econometrica, vol. 50, pp. 987–1008, 1982.
[6]  T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, 1986.
[7]  S. Banik, M. Anwer, K. Khan, R. A. Rouf, and F. H. Chanchary, “Neural network and genetic algorithm approaches for forecasting bangladeshi monsoon rainfall,” in Proceedings of the 11th International Conference on Computer and Information Technology (ICCIT '08), December 2008.
[8]  J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–685, 1993.
[9]  D. F. Cook and M. L. Wolfe, “A back-propagation neural network to predict average air temperatures,” AI Applications in Natural Resource Management, vol. 5, no. 1, pp. 40–46, 1991.
[10]  A. Abraham, N. S. Philip, and P. Saratchandran, “Modeling chaotic behavior of stock indices using intelligent paradigms,” International Journal of Neural, Parallel and Scientific Computations, vol. 11, no. 1-2, pp. 143–160, 2003.
[11]  J. Kamruzzaman and R. A. Sarker, “Comparing ANN based models with ARIMA for prediction of forex rates,” Bulletin of the American Schools of Oriental Research, vol. 22, no. 2, pp. 2–11, 2003.
[12]  G. E. P. Box and G. Jenkins, Time Series Analysis: Forecasting and Control, Cambridge University Press, Cambridge, UK, 1970.
[13]  S. Banik, F. H. Chanchary, R. A. Rouf, and K. Khan, “Modeling chaotic behavior of Dhaka Stock Market Index values using the neuro-fuzzy model,” in Proceedings of the 10th International Conference on Computer and Information Technology (ICCIT '07), pp. 80–85, December 2007.
[14]  C. R. Nelson and C. R. Plosser, “Trends and random walks in macroeconmic time series. Some evidence and implications,” Journal of Monetary Economics, vol. 10, no. 2, pp. 139–162, 1982.
[15]  W. F. Mitchell, “Testing for unit roots and persistence in OECD unemployment rates,” Applied Economics, vol. 25, no. 12, pp. 1489–1501, 1993.
[16]  R. S. McDougall, “The seasonal unit root structure in New Zealand macroeconomic variables,” Applied Economics, vol. 27, pp. 817–827, 1995.
[17]  W. H. Greene, Econometric Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 7th edition, 2008.
[18]  S. Banik, Testing for Stationarity, Seasonality and Long Memory in Economic and Financial Time Series [Ph.D. thesis], School of Business, La Trobe University, Bundoora, Australia, 1999, Unpublished.
[19]  S. Banik and P. Silvapulle, “Testing for seasonal stability in unemployment series: international evidence,” Empirica, vol. 26, no. 2, pp. 123–139, 1999.
[20]  S. E. Said and D. A. Dickey, “Testing for unit roots in autoregressive-moving average models of unknown order,” Biometrika, vol. 71, no. 3, pp. 599–607, 1984.
[21]  P. C. B. Phillips and P. Perron, “Testing for a unit root in time series regression,” Biometrika, vol. 75, no. 2, pp. 335–346, 1988.
[22]  R. L. Thomas, Modern Econometrics: An Introduction, Addision-Wesley, New York, NY, USA, 1997.
[23]  J. N. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Mich, USA, 1975.
[24]  Y. H. Lee, S. K. Park, and D. E. Chang, “Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast,” Annales Geophysicae, vol. 24, no. 12, pp. 3185–3189, 2006.
[25]  J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, Mass, USA, 1992.
[26]  Z. Wei, W. U. Zhi-ming, and Y. Gen-Ke, “Genetic programming-based chaotic time series modeling,” Journal of Zhejiang University, vol. 5, no. 11, pp. 1432–1439, 2004.
[27]  H. Pohlheim, Documentation for Genetic and Evolutionary Algorithm Toolbox for Use with MATLAB, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133