An enhanced bacteria foraging optimization (EBFO) algorithm-based Proportional + integral + derivative (PID) controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance. 1. Introduction In control literature, despite of significant developments in advanced process control schemes such as model predictive control (MPC), internal model control (IMC), and sliding mode control (SMC), PID controllers are still widely used in industrial control system where reference tracking and disturbance rejection are a major task. The key merits of the PID controllers over the advanced control techniques are as follows: (i) available in a variety of structures such as series, parallel, and so forth; (ii) provides an optimal and robust performance for a variety of processes; (iii) supports online/offline tuning and retuning based on the performance requirement of the process under control (iv) simple structure and it can be easily implementable in analog or digital form; (v) along with the basic and the modified structures, it also supports the one degree of freedom (1DOF), 2DOF, and 3DOF controller structures. Most of the real-time chemical process loops such as continuous stirred tank reactor (CSTR), biochemical reactor, spherical tank system, and conical tank system are nonlinear in nature. These nonlinear processes can be modelled as linear processes (stable or unstable process model with a delay time) around the operating region. The linear model is then efficiently controlled by employing a PID controller. The precision and performance of the PID controller mainly rely on three controller parameters such as proportional gain ( ), integral gain ( ), and derivative gain ( ). In recent years, a number of tuning rules have been proposed for the PID controllers to enhance the performance of the process to be controlled. Maher and Samir [1] have discussed the robust stability criterion for a class of unstable systems under model uncertainty. Vijayan and Panda [2] have
References
[1]
R. A. Maher and R. Samir, “Robust stability of a class of unstable systems under mixed uncertainty,” Journal of Control Science and Engineering, vol. 2011, no. 970962, 8 pages, 2011.
[2]
V. Vijayan and R. C. Panda, “Design of a simple setpoint filter for minimizing overshoot for low order processes,” ISA Transactions, vol. 51, no. 2, pp. 271–276, 2012.
[3]
R. Padma Sree and M. Chidambaram, Control of Unstable Systems, Narosa Publishing House, New Delhi, India, 2006.
[4]
M. K. Jhunjhunwala and M. Chidambaram, “Pid controller tuning for unstable systems by optimization method,” Chemical Engineering Communications, vol. 185, no. 1, pp. 91–113, 2001.
[5]
I. Chiha, N. Liouane, and P. Borne, “Tuning PID controller using multiobjective ant colony optimization,” Applied Computational Intelligence and Soft Computing, vol. 2012, Article ID 536326, 7 pages, 2012.
[6]
M. Zamani, N. Sadati, and M. K. Ghartemani, “Design of an H∞, PID controller using particle swarm optimization,” International Journal of Control, Automation and Systems, vol. 7, no. 2, pp. 273–280, 2009.
[7]
M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani, “Design of a fractional order PID controller for an AVR using particle swarm optimization,” Control Engineering Practice, vol. 17, no. 12, pp. 1380–1387, 2009.
[8]
W. D. Chang and S. P. Shih, “PID controller design of nonlinear systems using an improved particle swarm optimization approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3632–3639, 2010.
[9]
I. Zadeh Hassan and S. Mobayen, “Controller design for rotary inverted pendulum system using evolutionary algorithms,” Mathematical Problems in Engineering, vol. 2011, Article ID 572424, 17 pages, 2011.
[10]
V. Kanth and K. Latha, “Bacterial foraging optimization algorithm based pid controller tuning for time delayedunstable systems,” Mediterranean Journal of Measurement and Control, vol. 7, no. 1, pp. 197–203, 2011.
[11]
V. Kanth and K. Latha, “Optimization of PID controller parameters for unstable chemical systems using soft computing technique,” International Review of Chemical Engineering, vol. 3, no. 3, pp. 350–358, 2011.
[12]
K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52–67, 2002.
[13]
S. Dasgupta, S. Das, A. Abraham, and A. Biswas, “Adaptive computational chemotaxis in bacterial foraging optimization: an analysis,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 4, pp. 919–941, 2009.
[14]
S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “Automatic circle detection on digital images with an adaptive bacterial foraging algorithm,” Soft Computing, vol. 14, no. 11, pp. 1151–1164, 2010.
[15]
H. Chen, Y. Zhu, and K. Hu, “Cooperative bacterial foraging optimization,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 815247, 17 pages, 2009.
[16]
H. Chen, Y. Zhu, and K. Hu, “Adaptive bacterial foraging optimization,” Abstract and Applied Analysis, vol. 2011, Article ID 108269, 27 pages, 2011.
[17]
S. Das, S. Dasgupta, A. Biswas, A. Abraham, and A. Konar, “On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 39, no. 3, pp. 670–679, 2009.
[18]
S. Das, A. Biswas, S. Dasgupta, and A. Abraham, “Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications,” Studies in Computational Intelligence, vol. 203, pp. 23–55, 2009.
[19]
A. Biswas, S. Das, A. Abraham, and S. Dasgupta, “Stability analysis of the reproduction operator in bacterial foraging optimization,” Theoretical Computer Science, vol. 411, no. 21, pp. 2127–2139, 2010.
[20]
A. Biswas, S. Das, A. Abraham, and S. Dasgupta, “Design of fractional-order PIλDμ controllers with an improved differential evolution,” Engineering Applications of Artificial Intelligence, vol. 22, no. 2, pp. 343–350, 2009.
[21]
G. G. Roy, P. Chakraborty, and S. Das, “Designing fractional-order PIλDμ controller using differential harmony search algorithm,” International Journal of Bio-Inspired Computation, vol. 2, no. 5, pp. 303–309, 2010.
[22]
A. Ghosh, S. Das, A. Chowdhury, and R. Giri, “An ecologically inspired direct search method for solving optimal control problems with Bézier parameterization,” Engineering Applications of Artificial Intelligence, vol. 24, no. 7, pp. 1195–1203, 2011.
[23]
A. Ali and S. Majhi, “Design of optimum PID controller by bacterial foraging strategy,” in Proceedings of IEEE International Conference on Industrial Technology (ICIT '06), pp. 601–605, December 2006.
[24]
W. M. Korani, H. T. Dorrah, and H. M. Emara, “Bacterial foraging oriented by particle swarm optimization strategy for PID tuning,” in Proceedings of the 8th IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA '09), pp. 445–450, December 2009.
[25]
V. Kanth and K. Latha, “I-PD controller tuning for unstable system using bacterial foraging algorithm: a study based on various error criterion,” Applied computational Intelligence and Soft Computing, vol. 2012, Article ID 329389, 10 pages, 2012.
[26]
E. M. T El-Mansi and C. F. A. Bryce, Fermentation Microbiology and Biotechnology, Taylor and Francis, Indian reprint, 2003.
[27]
M. A. Johnson and M. H. Moradi, PID Control: New Identification and Design Methods, Springer, London, UK, 2005.
[28]
B. Wayne-Bequette, Process Control—Modeling, Design and Simulation, Prentice-Hall, New Delhi, India, 2003.
[29]
C. T. Liou and C. Yu-Shu, “The effect of nonideal mixing on input multiplicity in a CSTR,” Chemical Engineering Science, vol. 46, no. 8, pp. 2113–2116, 1991.
[30]
F. Faccin and J. O. Trierweiler, “A novel toll for multi-model PID controller design,” in Proceedings of the 7th IFAC symposium on Dynamics and Control of Process Systems, pp. 251–256, 2004.
[31]
P. Madhavasarma and S. Sundaram, “Model based tuning of a non linear spherical tank process with time delay,” Instrumentation Science and Technology, vol. 36, no. 4, pp. 420–431, 2008.
[32]
S. Nithya, N. Sivakumaran, T. Balasubramanian, and N. Anantharaman, “Design of controller for nonlinear process using soft computing,” Instrumentation Science and Technology, vol. 36, no. 4, pp. 437–450, 2008.