全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Real-Time Angle- and Illumination-Aware Face Recognition System Based on Artificial Neural Network

DOI: 10.1155/2012/274617

Full-Text   Cite this paper   Add to My Lib

Abstract:

Automatic authentication systems, using biometric technology, are becoming increasingly important with the increased need for person verification in our daily life. A few years back, fingerprint verification was done only in criminal investigations. Now fingerprints and face images are widely used in bank tellers, airports, and building entrances. Face images are easy to obtain, but successful recognition depends on proper orientation and illumination of the image, compared to the one taken at registration time. Facial features heavily change with illumination and orientation angle, leading to increased false rejection as well as false acceptance. Registering face images for all possible angles and illumination is impossible. In this work, we proposed a memory efficient way to register (store) multiple angle and changing illumination face image data, and a computationally efficient authentication technique, using multilayer perceptron (MLP). Though MLP is trained using a few registered images with different orientation, due to generalization property of MLP, interpolation of features for intermediate orientation angles was possible. The algorithm is further extended to include illumination robust authentication system. Results of extensive experiments verify the effectiveness of the proposed algorithm. 1. Introduction The need for personal identification has grown enormously in the last two decades. Previously, biometric identification using fingerprints or face images was restricted to criminal prosecution only. A few experts could serve the demand. With increased terrorist activities, stricter security requirements for entering buildings, and other related applications, need for automatic biometric machine-authentication systems is getting more and more important. Recognizing people from face (face image) is the most natural and widely used method we human do always and effortlessly. Due to ease of collection without disturbing the subject, it is one of the most popular ways of automatic machine authentication. An excellent survey of face-recognition algorithms is available in [1]. In automatic face recognition, the first step is to identify the boundary of the face and separate it from the photographed image. Next, recognition algorithms extract feature vectors from the input (probe) image. These features are then compared with the set of such features stored in the database. The database (gallery image) contains same set of features already extracted and stored during registration phase for all persons required to be authenticated. There are two

References

[1]  W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: a literature survey,” ACM Computing Surveys, vol. 35, no. 4, pp. 399–458, 2003.
[2]  B. Chakraborty, “A novel ANN based approach for angle invariant face verification,” in Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing (CIISP '07), pp. 72–76, April 2007.
[3]  M. A. Turk and A. P. Pentland, “Face recognition using eigen faces,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '91), pp. 586–591, June 1991.
[4]  S. K. Zhou, R. Chellappa, and W. Zhao, Unconstrained Face Recognition, Springer, 2006.
[5]  R. Gross, S. Baker, I. Matthews, and T. Kanade, “Face recognition scross pose and illumination,” in Handbook of Face Recognition, S. Z. Li and A. K. Jain, Eds., Springer, 2004.
[6]  P. J. Phillips, et al., “Face recognition vendor test 2002: evaluation report,” NISTIR 6965, 2003, http://www.frvt.org/.
[7]  T. Maurer and C. von der Malsburg, “Single-view based recognition of faces rotated in depth,” in Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 248–253, 1995.
[8]  D. Beymer, “Face recognition under varying pose,” Technical Report 1461, MIT AI Laboratory, Cambridge, Mass, USA, 1995.
[9]  S. Ullman and R. Basri, “Recognition by linear combinations of models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 10, pp. 992–1006, 1991.
[10]  A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660, 2001.
[11]  A. Pentland, B. Moghaddam, and T. Starner, “View-based and modular eigenspaces for face recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '94), pp. 84–91, June 1994.
[12]  L. Wiskott, J. M. Fellous, N. Krüger, and C. D. Von Malsburg, “Face recognition by elastic bunch graph matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775–779, 1997.
[13]  R. Gross, I. Matthews, and S. Baker, “Eigen Light-Fields and Face Recognition across Pose,” in Proceedings of the 5th International Conference on Automatic Face and Gesture Recognition, 2002.
[14]  T. Kanade and A. Yamada, “Multi-Subregion based probabilistic approach toward pose invariant face recognition,” in Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA '3), pp. 954–959, 2003.
[15]  R. Gross, I. Matthews, and S. Baker, “Appearance-based face recognition and light-fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 4, pp. 449–465, 2004.
[16]  S. K. Zhou and R. Chellappa, “Image-based face recognition under illumination and pose variations,” Journal of the Optical Society of America A, vol. 22, no. 2, pp. 217–229, 2005.
[17]  G. Chakraborty, B. Chakraborty, J. C. Patra, and C. Pornavalai, “An MLP-based face authentication technique robust to orientation,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '09), pp. 481–488, Atlanta, Ga, USA, June 2009.
[18]  J. Shermina and V. Vasudevan, “An efficient face recognition system based on the hybridization of invariant pose and illumination process,” European Journal of Scientific Research, vol. 64, no. 2, pp. 225–243, 2011.
[19]  H. F. Liau and D. Isa, “New illumination compensation method for face recognition,” International Journal of Computer and Network Security, vol. 2, no. 3, pp. 5–12, 2010.
[20]  J. Shermina, “Impact of locally linear regression and fisher linear discriminant analysis in pose invariant face recognition,” International Journal of Computer Science and Network Security, vol. 10, no. 10, 2010.
[21]  J. Shermina, “Illumination invariant face recognition using discrete cosine transform and principal component analysis,” in Proceedings of the International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT '11), pp. 826–830, March 2011.
[22]  S. J. D. Prince and J. H. Elder, “Creating invariance to “nuisance parameters” in face recognition,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 446–453, June 2005.
[23]  H. Murase and S. K. Nayar, “Visual learning and recognition of 3-d objects from appearance,” International Journal of Computer Vision, vol. 14, no. 1, pp. 5–24, 1995.
[24]  D. Graham and N. Allison, “Face recognition from unfamiliar views: subspace methods and pose dependency,” in Proceedings of the International Conference of Automatic Face and Gesture Recognition, pp. 348–353, 1998.
[25]  W. Zhao and R. Chellappa, “A guided tour of face processing,” in Face Processing, Zhaoo and Chellappa, Eds., Academic Press, 2006.
[26]  http://www.softopia.or.jp/rd/facedb/top.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133