全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Biosolids Application on Pasture and Grape Vines in South-Eastern Australia

DOI: 10.1155/2011/342916

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biosolids were applied to a pasture and a vineyard in south-eastern Australia. At both sites, soil Cd, Cu, and Zn concentrations linearly increased with biosolids application rates although not to the extent of exceeding soil quality guidelines. Biosolids marginally increased soil C and N concentrations at the pasture site but significantly increased P concentrations. With lower overall soil fertility at the vineyard, biosolids increased C, N, and P concentrations. At neither site did biosolids application affect soil microbial endpoints. Biosolids increased pasture production compared to the unfertilised control but had little effect on grape production or quality. Interestingly, over the 3-year trial, there was no difference in pasture production between the biosolids treated plots and plots receiving inorganic fertiliser. These results suggest that biosolids could be used as a fertiliser to stimulate pasture production and as a soil conditioner to improve vineyard soils in this region. 1. Introduction Biosolids are the solid or semisolid material produced from the biological treatment of sewage. As biosolids contain pathogens and contaminants that can adversely affect flora and fauna (including humans), management of the increasing amounts generated is a major international issue [1, 2]. In the past, ocean dumping was an acceptable management option [3, 4] but is now banned in some jurisdictions [5]. Given the organic nature of biosolids and the plant nutrients they contain, there is increasing emphasis on alternative disposal methods such as land application [6]. Composting can be used to reduce health risks from pathogenic organisms contained in biosolids [7, 8] prior to their application to land. However, depending on the concentrations initially present in the biosolids, metals and organic pollutants (such as pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons) that remain after such treatments may adversely affect soil and human health [9, 10]. Studies examining changes in soil health following biosolids addition to soil have been somewhat equivocal, because the apparently negative effects of organic chemicals and metals on soil biota may be outweighed by the positive effects organic matter additions [11–16]. In 2003, a series of field trials were established in south-eastern Australia as part of the Australian National Biosolids Research Program (NBRP). The NBRP aimed: (a) to quantify the potential human and environmental risks and benefits of applying biosolids to agricultural land, and (b) to develop biosolids quality

References

[1]  R. L. Swanson, M. L. Bortman, T. P. O'Connor, and H. M. Stanford, “Science, policy and the management of sewage materials. The New York City experience,” Marine Pollution Bulletin, vol. 49, no. 9-10, pp. 679–687, 2004.
[2]  M. J. Wang, “Land application of sewage sludge in China,” Science of the Total Environment, vol. 197, no. 1–3, pp. 149–160, 1997.
[3]  F. L. Franklin, “Laboratory tests as a basis for the control of sewage sludge dumping at sea,” Marine Pollution Bulletin, vol. 14, no. 6, pp. 217–223, 1983.
[4]  D. W. Mackay, W. Halcrow, and I. Thornton, “Sludge dumping in the firth of Clyde,” Marine Pollution Bulletin, vol. 3, no. 1, pp. 7–10, 1972.
[5]  R. T. Hill, W. L. Straube, A. C. Palmisano, S. L. Gibson, and R. R. Colwell, “Distribution of sewage as indicated by clostridiumperfrigens at a deep-water disposal site after cessation of sewage disposal,” Applied and Environmental Microbiology, vol. 62, no. 5, pp. 1741–1746, 1996.
[6]  USEPA, Standards for the Use and Disposal of Sewage Sludge; Final Rules, USEPA, Washington, DC, USA, 1993.
[7]  S. Gajalakshmi and S. A. Abbasi, “Solid waste management by composting: state of the art,” Critical Reviews in Environmental Science and Technology, vol. 38, no. 5, pp. 311–400, 2008.
[8]  J. F. Parr, E. Epstein, and G. B. Willson, “Composting sewage sludge for land application,” Agriculture and Environment, vol. 4, no. 2, pp. 123–137, 1978.
[9]  R. B. Dean and M. J. Suess, “The risk to health of chemicals in sewage sludge applied to land,” Waste Management and Research, vol. 3, no. 3, pp. 251–278, 1985.
[10]  E. Z. Harrison, S. R. Oakes, M. Hysell, and A. Hay, “Organic chemicals in sewage sludges,” Science of the Total Environment, vol. 367, no. 2-3, pp. 481–497, 2006.
[11]  M. R. Banerjee, D. L. Burton, and S. Depoe, “Impact of sewage sludge application, on soil biological characteristics,” Agriculture, Ecosystems and Environment, vol. 66, no. 3, pp. 241–249, 1997.
[12]  I. Sastre, M. A. Vicente, and M. C. Lobo, “Influence of the application of sewage sludges on soil microbial activity,” Bioresource Technology, vol. 57, no. 1, pp. 19–23, 1996.
[13]  L. Vasseur, C. Cloutier, and C. Ansseau, “Effects of repeated sewage sludge application on plant community diversity and structure under agricultural field conditions on Podzolic soils in eastern Quebec,” Agriculture, Ecosystems and Environment, vol. 81, no. 3, pp. 209–216, 2000.
[14]  J. W. Brendecke, R. D. Axelson, and I. L. Pepper, “Soil microbial activity as an indicator of soil fertility: long-term effects of municipal sewage sludge on an arid soil,” Soil Biology and Biochemistry, vol. 25, no. 6, pp. 751–758, 1993.
[15]  J. S. Angle, S. P. McGrath, A. M. Chaudri, R. L. Chaney, and K. E. Giller, “Inoculation effects on legumes grown in soil previously treated with sewage sludge,” Soil Biology and Biochemistry, vol. 25, no. 5, pp. 575–580, 1993.
[16]  I. Koomen, S. P. McGram, and K. E. Giller, “Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications,” Soil Biology and Biochemistry, vol. 22, no. 6, pp. 871–873, 1990.
[17]  M. J. McLaughlin, M. St. J. Warne, D. P. Stevens, et al., “Australia's National Biosolid Research Program—how it came about, and what has it discovered?” Water Practice and Technology, vol. 2, no. 4, article 88, 2007.
[18]  K. Broos, M. ST. J. Warne, D. A. Heemsbergen et al., “Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils,” Environmental Toxicology and Chemistry, vol. 26, no. 4, pp. 583–590, 2007.
[19]  M. ST. J. Warne, D. Heemsbergen, M. McLaughlin et al., “Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models,” Environmental Pollution, vol. 156, no. 3, pp. 707–714, 2008.
[20]  M. ST. J. Warne, D. Heemsbergen, D. Stevens et al., “Modeling the toxicity of copper and zinc salts to wheat in 14 soils,” Environmental Toxicology and Chemistry, vol. 27, no. 4, pp. 786–792, 2008.
[21]  M. J. McLaughlin, M. Whatmuff, M. Warne et al., “A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types,” Environmental Chemistry, vol. 3, no. 6, pp. 428–432, 2006.
[22]  D. A. Heemsbergen, M. J. McLaughlin, M. Whatmuff et al., “Bioavailability of zinc and copper in biosolids compared to their soluble salts,” Environmental Pollution, vol. 158, no. 5, pp. 1907–1915, 2010.
[23]  D. A. Heemsbergen, M. ST. J. Warne, K. Broos et al., “Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids,” Science of the Total Environment, vol. 407, no. 8, pp. 2546–2556, 2009.
[24]  N. Korboulewsky, S. Dupouyet, and G. Bonin, “Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorus accumulation,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1522–1527, 2002.
[25]  R. F. Isbell, Australian Soil Classification, CSIRO, Melbourne, Australia, 2nd edition, 2002.
[26]  G. E. Rayment and F. R. Higginson, Australian Laboratory Handbook of Soil and Water Chemical Methods, Inkata Press, Melbourne, Australia, 1992.
[27]  EPA Victoria, Guidelines for Environmental Management: Biosolids Land Application, EPA Victoria, Southbank, UK, 2004.
[28]  B. A. Zarcinas, B. Cartwright, and L. R. Spouncer, “Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry,” Communications in Soil Science and Plant Analysis, vol. 18, no. 1, pp. 131–146, 1987.
[29]  B. A. Zarcinas, M. J. McLaughlin, and M. K. Smart, “The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry,” Communications in Soil Science and Plant Analysis, vol. 27, no. 5-8, pp. 1331–1354, 1996.
[30]  P. Iland, N. Bruer, G. Edwards, S. Weeks, and E. Wilkes, Chemical Analysis of Grapes and Wine: Techniques and Concepts, Patrick Iland Wine Promotions Pty, Adelaide, Australia, 2004.
[31]  D. L. Sparks, et al., Methods of Soil Analysis—Part 3 Chemical Methods, edited by D. L. Sparks, Soil Science Society of America, no. 5, American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Madison, Wis, USA, 1st edition, 1996.
[32]  OECD, OECD Guidelines for Testing of Chemicals. Soil Micro-Organisms: Nitrogen Transformation test and Carbon Transformation Test, Paris, France, 2000.
[33]  E. Smolders, K. Brans, F. Coppens, and R. Merckx, “Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils,” Environmental Toxicology and Chemistry, vol. 20, no. 11, pp. 2469–2474, 2001.
[34]  GenStat, GenStat for Windows. Release 9.1, VSN International, Hemel Hempstead, UK, 2007.
[35]  M. Suhadolc, R. Schroll, A. Hagn, U. D?rfler, M. Schloter, and F. Lobnik, “Single application of sewage sludge—impact on the quality of an alluvial agricultural soil,” Chemosphere, vol. 81, no. 11, pp. 1536–1543, 2010.
[36]  K. I. Peverill, L. A. Sparrow, and D. J. Reuter, Eds., Soils Analysis: An Interpretation Manual, CSIRO, Collingwood, Australia, 1999.
[37]  D. K. Singh and P. W. G. Sale, “Subsoil phosphorus concentration and tolerance of heavily grazed legume-based pastures to dry soil conditions,” Wool Technology and Sheep Breeding, vol. 50, no. 3, pp. 499–502, 2002.
[38]  FSANZ, Australia and New Zealand Food Standards Code. Incorporating up to including amendments 80, edited by F. S. A. Zealand, Anstat. Pty, Canberra, Australia, 2005.
[39]  E. W. Russell, Soil Conditions and Plant Growth, Longman, 10th edition, 1973.
[40]  Department of Primary Industries, Fertilising Dairy Pastures, Victorian State Government, Melbourne, Australia, 2nd edition, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133