Areas reclaimed for agricultural uses following coal mining often receive biosolids applications to increase organic matter and fertility. Transport of heavy metals within these soils may be enhanced by the additional presence of biosolids colloids. Intact monoliths from reclaimed and undisturbed soils in Virginia and Kentucky were leached to observe Cu and Zn mobility with and without biosolids application. Transport of Cu and Zn was observed in both solution and colloid associated phases in reclaimed and undisturbed forest soils, where the presence of unweathered spoil material and biosolids amendments contributed to higher metal release in solution fractions. Up to 81% of mobile Cu was associated with the colloid fraction, particularly when gibbsite was present, while only up to 18% of mobile Zn was associated with the colloid fraction. The colloid bound Cu was exchangeable by ammonium acetate, suggesting that it will release into groundwater resources. 1. Introduction Water dispersible colloids may be a carrier vector for contaminants in the unsaturated soils zone, transporting metals to surface and groundwater [1–4]. The soil matrix is assumed to be a buffer to contaminant transport, due to its ability to sorb metals [2], but the mobilization of dispersible colloids from this matrix have been shown to transport contaminants [3, 4]. Reclaimed mine soils can be a source of heavy metals, released from unweathered spoil material, industrial wastes, fertilizers, power station fly ash, or biosolids applied during reclamation [5]. Copper (Cu), lead (Pb), or zinc (Zn) sulfides can leach from fresh spoil material [6], while cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), and Pb can all be contained in phosphorus fertilizers [5]. Up to 95% of biosolids associated metals have been accounted for in the soil profile following biosolids application [7, 8], while under increasingly acidic conditions trace metals were observed to at least a 1?m depth in mine soils receiving biosolids [9]. Within this soil matrix, metal sorption is controlled by pH, clay mineralogy [10], or complexation with soil organic matter [11, 12]. It is commonly assumed that metals are adsorbed in the upper 15 to 30?cm of the soil matrix, thereby reducing their mobility [13, 14], but studies have observed significant metal transport by dispersed colloidal material [15, 16]. Therefore, early models which partition metals between an immobile solid and mobile liquid phase only have to be revised to include colloid particulate material as a third mobile solid phase, and a potential
References
[1]
J. F. McCarthy and L. D. McKay, “Colloid transport in the subsurface. Past, present, and future challenges,” Vadose Zone Journal, vol. 3, pp. 326–337, 2004.
[2]
J. M. Levin, J. S. Herman, G. M. Hornberger, and J. E. Saiers, “The effect of soil water tension on colloid generation within an unsaturated, intact soil core,” in Colloids and Colloid-Facilitated Transport of Contaminants in Soils and Sediments, Foulum, pp. 107–111, Tjele, Denmark, October 2002, DIAS report.
[3]
A. K. Seta and A. D. Karathanasis, “Water dispersible colloids and factors influencing their dispersibility from soil aggregates,” Geoderma, vol. 74, no. 3-4, pp. 255–266, 1996.
[4]
L. W. de Jonge, C. Kjaergaard, and P. Moldrup, “Colloids and colloid-facilitated transport of contaminants in soils: an introduction,” Vadose Zone Journal, vol. 3, pp. 321–325, 2004.
[5]
M. J. Haigh, “Soil quality standards for reclaimed coal-mine disturbed lands: a discussion paper,” International Journal of Surface Mining & Reclamation, vol. 9, no. 4, pp. 187–202, 1995.
[6]
G. Geidel and F. T. Caruccio, “Geochemical factors affecting coal mine drainage quality,” in Reclamation of Drastically Disturbed Lands, R. I. Barnhisel, W. L. Daniels, and R. Darmody, Eds., Agronomy Monograph 41, pp. 105–130, America Society of Agronomy, CSSA, and SSSA, Madison, Wis, USA, 2000.
[7]
S. P. McGrath and P. W. Lane, “An explanation for the apparent losses of metals in a long-term field experiment with sewage sludge,” Environmental Pollution, vol. 60, no. 3-4, pp. 235–256, 1989.
[8]
B. F. Sukkariyah, G. Evanylo, L. Zelazny, and R. L. Chaney, “Recovery and distribution of biosolids-derived trace metals in a clay loam soil,” Journal of Environmental Quality, vol. 34, no. 5, pp. 1843–1850, 2005.
[9]
R. Stehouwer, R. L. Day, and K. E. Macneal, “Nutrient and trace element leaching following mine reclamation with biosolids,” Journal of Environmental Quality, vol. 35, no. 4, pp. 1118–1126, 2006.
[10]
N. Konig, P. Baccini, and B. Ulrich, “The influence of natural organic substances on the distribution of metals over soil and soil solution,” Zeitschrift für Pflanzenern?hrung und Bodenkunde, vol. 149, pp. 69–82, 1986.
[11]
G. Sposito, L. J. Lund, and A. C. Chang, “Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases,” Soil Science Society of America Journal, vol. 46, pp. 260–264, 1982.
[12]
A. A. Pohlman and J. G. McColl, “Kinetics of metal dissolution from forest soils by soluble organic acids,” Journal of Environmental Quality, vol. 15, no. 1, pp. 86–92, 1986.
[13]
T. Streck and J. Richter, “Heavy metal displacement in a sandy soil at the field scale: I. Measurements and parameterization of sorption,” Journal of Environmental Quality, vol. 26, no. 1, pp. 49–56, 1997.
[14]
L. Gove, C. M. Cooke, F. A. Nicholson, and A. J. Beck, “Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions,” Bioresource Technology, vol. 78, no. 2, pp. 171–179, 2001.
[15]
J. F. McCarthy and J. M. Zachara, “Subsurface transport of contaminants: mobile colloids in the subsurface environment may alter the transport of contaminants,” Environmental Science and Technology, vol. 23, pp. 496–502, 1989.
[16]
D. Grolimund, M. Borkovec, K. Barmettler, and H. Sticher, “Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study,” Environmental Science and Technology, vol. 30, no. 10, pp. 3118–3123, 1996.
[17]
D. Grolimund, K. Barmettler, and M. Borkovec, “Colloid facilitated transport in natural porous media: fundamental phenomena and modeling,” in Colloidal Transport in Porous Media, F. Frimmel, F. von der Kammer, and H.-C. Flemming, Eds., pp. 3–24, Springer, New York, NY, USA, 2007.
[18]
K. C. Haering, W. L. Daniels, and S. E. Feagley, “Reclaiming mined lands with biosolids, manures, and papermill sludges,” in Reclamation of Drastically Disturbed Lands, R. I. Barnhisel, W. L. Daniels, and R. Darmody, Eds., Agronomy Monograph 41, pp. 615–644, America Society of Agronomy, CSSA, and SSSA, Madison, Wis, USA, 2000.
[19]
A. D. Karathanasis and D. W. Ming, “Colloid-mediated transport of metals associated with lime-stabilized biosolids,” Developments in Soil Science, vol. 28, pp. 49–62, 2002.
[20]
A. D. Karathanasis and D. M. C. Johnson, “Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids,” Science of the Total Environment, vol. 354, no. 2-3, pp. 157–169, 2006.
[21]
W. E. Sopper, Municipal Sludge Use in Land Reclamation, Lewis Publishers, Boca Raton, Fla, USA, 1993.
[22]
T. A. Al and D. W. Blowes, “Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario,” Journal of Hydrology, vol. 180, no. 1–4, pp. 55–78, 1996.
[23]
J. G. Skousen, A. Sexstone, and P. F. Ziemkiewicz, “Acid mine drainage control and treatment,” in Reclamation of Drastically Disturbed Lands, R. I. Barnhisel, W. L. Daniels, and R. Darmody, Eds., Agronomy Monograph 41, America Society of Agronomy, CSSA, and SSSA, Madison, Wis, USA, 2000.
[24]
J. F. McCarthy and L. Shevenell, “Processes controlling colloid composition in a fractured and karstic aquifer in eastern Tennessee, USA,” Journal of Hydrology, vol. 206, no. 3-4, pp. 191–218, 1998.
[25]
A. D. Karathanasis, “Subsurface migration of copper and zinc mediated by soil colloids,” Soil Science Society of America Journal, vol. 63, no. 4, pp. 830–838, 1999.
[26]
P. M. Bertsch and J. C. Seaman, “Characterization of complex mineral assemblages: implications for contaminant transport and environmental remediation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3350–3357, 1999.
[27]
C. D. Barton and A. D. Karathanasis, “Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths,” Water, Air, and Soil Pollution, vol. 143, no. 1–4, pp. 3–21, 2003.
[28]
J. O. Miller, A. D. Karathanasis, O. O. Wendroth, C. J. Matocha, and C. D. Barton, “In situ colloid mobilization within biosolid amended soils following coal mine reclamation,” in Proceedings of the NGWA/U.S. EPA Remediation of Abandoned Mine Lands Conference (#5019), Denver, Colo, USA, 2008.
[29]
S. J. Traina, J. Novak, and N. E. Smeck, “An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids,” Journal of Environmental Quality, vol. 19, no. 1, pp. 151–153, 1990.
[30]
A. D. Karathanasis and B. F. Hajek, “Revised methods for rapid quantitative determination of minerals in soil clays,” Soil Science Society of America Journal, vol. 46, no. 2, pp. 419–425, 1982.
[31]
A. T. Lombardi and O. Garcia, “An evaluation into the potential of biological processing for the removal of metals from sewage sludges,” Critical Reviews in Microbiology, vol. 25, no. 4, pp. 275–288, 1999.
[32]
J. O. Miller, A. D. Karathanasis, and O. O. B. Wendroth, “In situ colloid generation and transport in 30-year-old mine soil profiles receiving biosolids,” International Journal of Mining, Reclamation and Environment, vol. 24, no. 2, pp. 95–108, 2010.
[33]
S. Brown, R. Chaney, and J. S. Angle, “Subsurface liming and metal movement in soils amended with lime-stabilized biosolids,” Journal of Environmental Quality, vol. 26, no. 3, pp. 724–732, 1997.
[34]
M. B. McBride, B. K. Richards, T. Steenhuis, J. J. Russo, and S. Sauvé, “Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application,” Soil Science, vol. 162, no. 7, pp. 487–500, 1997.
[35]
M. B. McBride, B. K. Richards, T. Steenhuis, and G. Spiers, “Long-term leaching of trace elements in a heavily sludge-amended silly clay loam soil,” Soil Science, vol. 164, no. 9, pp. 613–623, 1999.
[36]
F. A. Vega, E. F. Covelo, and M. L. Andrade, “Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 582–592, 2006.
[37]
F. M. Kishk and M. N. Hassan, “Sorption and desorption of copper by and from clay minerals,” Plant and Soil, vol. 39, no. 3, pp. 497–505, 1973.
[38]
S. A. Bradford, J. Simunek, M. Bettahar, M. T. van Genuchten, and S. R. Yates, “Significance of straining in colloid deposition: evidence and implications,” Water Resources Research, vol. 42, no. 12, Article ID W12S15, 2006.
[39]
R. Krebs, S. K. Gupta, G. Furrer, and R. Schulin, “Solubility and plant uptake of metals with and without liming of sludge-amended soils,” Journal of Environmental Quality, vol. 27, no. 1, pp. 18–23, 1998.