|
Physics 1993
Directed Polymers with Random Interaction : An Exactly Solvable Case -Abstract: We propose a model for two $(d+1)$-dimensional directed polymers subjected to a mutual $\delta$-function interaction with a random coupling constant, and present an exact renormalization group study for this system. The exact $\beta$-function, evaluated through an $\epsilon(=1-d)$ expansion for second and third moments of the partition function, exhibits the marginal relevance of the disorder at $d=1$, and the presence of a phase transition from a weak to strong disorder regime for $d>1$. The lengthscale exponent for the critical point is $\nu=1/2\mid\epsilon\mid$. We give details of the renormalization. We show that higher moments do not require any new interaction, and hence the $\beta$ function remains the same for all moments. The method is extended to multicritical systems involving an $m$ chain interaction. The corresponding disorder induced phase transition for $d>d_m=1/(m-1)$ has the critical exponent ${\nu}_m=[2d(m-1)-2]^{-1}$. For both the cases, an essential singularity appears for the lengthscale right at the upper critical dimension $d_m$. We also discuss the strange behavior of an annealed system with more than two chains with pairwise random interactions among each other.
|