全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1993 

Directed Polymers with Random Interaction : An Exactly Solvable Case -

DOI: 10.1103/PhysRevE.48.3483

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a model for two $(d+1)$-dimensional directed polymers subjected to a mutual $\delta$-function interaction with a random coupling constant, and present an exact renormalization group study for this system. The exact $\beta$-function, evaluated through an $\epsilon(=1-d)$ expansion for second and third moments of the partition function, exhibits the marginal relevance of the disorder at $d=1$, and the presence of a phase transition from a weak to strong disorder regime for $d>1$. The lengthscale exponent for the critical point is $\nu=1/2\mid\epsilon\mid$. We give details of the renormalization. We show that higher moments do not require any new interaction, and hence the $\beta$ function remains the same for all moments. The method is extended to multicritical systems involving an $m$ chain interaction. The corresponding disorder induced phase transition for $d>d_m=1/(m-1)$ has the critical exponent ${\nu}_m=[2d(m-1)-2]^{-1}$. For both the cases, an essential singularity appears for the lengthscale right at the upper critical dimension $d_m$. We also discuss the strange behavior of an annealed system with more than two chains with pairwise random interactions among each other.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133