The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the nonsaturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics. 1. Introduction The global scale environmental changes resulting from anthropic process of space occupation and urbanization impose fees which are incompatible with the carrying capacity of natural ecosystems. In this context, surface waters have been increasingly penalized with several launches of waste resulting from populational growth and disorderly occupation of protected areas. Thus, water quality worsens, and making it drinkable requires treatment with greater quantities of chemicals than usual to be applied. As a result, waste increases in water treatment plants (WTPs) such as the sludge generated in clarifiers and water resulting from the filter washing. In Brazil, there are about 7,500 WTPs, called conventional or traditional, which use coagulation/flocculation/sedimentation and filtration systems for water treatment. These systems generate wastes in the clarifiers and filters that, in most cases, are released directly into rivers, lakes, and reservoirs, aggravating the environmental issue [1–3]. The chemical sludge produced by the water treatment plants is an extremely gelatinous material composed by aluminum hydroxides, inorganic particles such as clay and silt, color colloids and microorganisms including plankton, and other organic and inorganic materials, which are removed from the treated water, or from the chemicals added to the process [4, 5]. Its pH range is from 5 to 7, which is insoluble in the range of natural water pH. It is estimated that in Brazil about 2,000?tons/day of WTS are dumped directly into waterways without any treatment [6]. This practice contributes to the organic pollution, which may
References
[1]
F. R. A. Bidone, C. M. B. De Castro, and N. Aboy, “Monitoramento de parametros físico/químicos de lodos de ETAS durante a sua desidrata??o em leitos de secagem com diferentes espessuras de leito drenante,” in Anais em 19o Congresso Brasileiro de Engenharia Sanitária e Ambiental, ABES, Foz do Igua?u, Brazil, 1997, CD-Rom.
[2]
L. Di Bernardo, P. S. Scalize, P. Fragiacomo, J. C. Trofino, and M. A. P. Viudes, “Clarifica??o da água de lavagem de filtros de sistemas de filtra??o direta ascendente e desaguamento do lodo por centrifuga??o,” in Anais em 20o Congresso Brasileiro de Engenharia Sanitária e Ambiental, pp. 1555–1565, ABES, Rio de Janeiro, Brazil, 1999, Cd-Rom (II–084).
[3]
M. P. S. Parsekian, Análise e proposta de formas de gerenciamento de esta??es de tratamento de águas de abastecimento completo em cidades de porte médio do Estado de S?o Paulo, Disserta??o de Mestrado, Escola de Engenharia de S?o Carlos/USP, S?o Carlos, Brazil, 1998.
[4]
C. V. Andreoli, Resíduos Sólidos do Saneamento: Processamento, Reciclagem e Disposi??o Final, Projeto PROSAB, RiMa, ABES, Rio de Janeiro, Brazil, 2001.
[5]
R. C. A. Moreira, G. R. Boaventura, C. T. C. Nascimento, E. M. Guimar?es, and R. P. Oliveira, “Uso do Lodo Químico, Rico em Alumínio, produzido pela Esta??o de Tratamento de água Rio Descoberto para a recupera??o de uma área degradada,” Geochimica Brasiliensis, vol. 21, no. 1, pp. 22–35, 2007.
[6]
J. S. Cordeiro, “Importancia do tratamento e disposi??o adequada dos lodos de ETAs,” in No??es Gerais de Tratamento de Disposi??o Final de Lodos de ETA, M. A. P. Reali, Ed., pp. 1–19, ABES/PROSAB, Rio de Janeiro, Brazil, 1999.
[7]
L. C. G. T. Machado, M. X. Ponte, L. N. A. Lopes, and J. A. R. Pereira, “Utiliza??o de resíduo de ETA como insumo agrícola,” in Anais dos do 23o Congresso Brasileiro de Engenharia Sanitária e Ambiental, Cuiabá, Brazil, 2005, CD-ROM.
[8]
R. M. Barbosa, J. Povinelli, O. Rocha, and E. L. G. Espíndola, “A toxicidade de despejos (lodos) de esta??es de tratamento de água à Daphnia similis (CLADOCERA, CRUSTACEA),” in Anais do XXVII Congresso Interamericano de Engenharia Sanitária e Ambiental, Porto Alegre, Brazil, 2000.
[9]
D. B. George, S. G. Berk, V. D. Adams et al., “Toxicity of alum sludge extracts to a freshwater alga, protozoan, fish, and marine bacterium,” Archives of Environmental Contamination and Toxicology, vol. 29, no. 2, pp. 149–158, 1995.
[10]
R. B. Sotero-Santos, O. Rocha, and J. Povinelli, “Evaluation of water treatment sludges toxicity using the Daphnia bioassay,” Water Research, vol. 39, no. 16, pp. 3909–3917, 2005.
[11]
S. Agyin-Birikorang, G. A. O'Connor, L. W. Jacobs, K. C. Makrins, and S. R. Brinton, “Long-term phosphorus immobilization by a drinking water treatment residual,” Journal of Environmental Quality, vol. 36, no. 1, pp. 316–323, 2007.
[12]
S. Agyin-Birikorang and G. A. O'Connor, “Lability of drinking water treatment residuals (WTR) immobilized phosphorus: aging and pH effects,” Journal of Environmental Quality, vol. 36, no. 4, pp. 1076–1085, 2007.
[13]
R. M. Bayley, J. A. Ippolito, M. E. Stromberger, K. A. Barbarick, and M. W. Paschke, “Water treatment residuals and biosolids coapplications affect semiarid rangeland phosphorus cycling,” Soil Science Society of America Journal, vol. 72, no. 3, pp. 711–719, 2008.
[14]
E. A. Dayton and N. T. Basta, “Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores,” Journal of Environmental Quality, vol. 34, no. 6, pp. 2112–2117, 2005.
[15]
J. E. Hyde and T. F. Morris, “Phosphorus availability in soils amended with dewatered water treatment residual and metal concentrations with time in residual,” Journal of Environmental Quality, vol. 29, no. 6, pp. 1896–1904, 2000.
[16]
A. M. Mahdy, E. A. Elkhatib, and N. O. Fathi, “Drinking water treatment residuals as an amendment to alkaline soils: effects on the growth of corn and phosphorus extractability,” International Journal of Environmental Science and Technology, vol. 4, no. 4, pp. 489–496, 2007.
[17]
O. O. Oladesi, G. A. O'Connor, J. B. Sartain, and V. D. Nair, “Controlled application rate of water treatment residual for agronomic and environmental benefits,” Journal of Environmental Quality, vol. 36, no. 6, pp. 1715–1724, 2007.
[18]
E. Lenzi, E. M. Nogami, D. Galli, and M. M. Morales, “Estudo do lodo da ETA de Maringá (PR) e seu possível destino,” in Anais do dos 22o Congresso Brasileiro de Engenharia Sanitária e Ambiental, Joinville, Brazil, 2005, CD-ROM.
[19]
A. A. Moreira, J. A. Silva, A. C. S. Cardim, J. L. Argolo, A. Schiavetti, and E. S. Martins, “Análise do material em suspens?o da represa do Descoberto/DF e sua reutiliza??o em áreas degradadas,” in Resumo Expandido, IX Congresso Brasileiro de Geoquímica, pp. 76–78, 2003.
[20]
A. B. D. Barbosa, “A experiência da CAESB em recupera??o de água de lavagem de filtros e desidrata??o de lodo de ETA,” in Anais em do 19o Congresso Brasileiro de Engenharia Sanitária e Ambiental, ABES, Foz do Igua?u, Brazil, 1997, CD-Rom.
[21]
Sebrae, A Quest?o Ambiental no Distrito Federal, Edi??o SEBRAE/DF, Brasília, Brazil, 2004.
[22]
M. M. Barroso and J. S. Cordeiro, “Metais e sólidos: aspectos legais dos resíduos de esta??o de tratamento de água,” in Anais do 21o Congresso Brasileiro de Engenharia Sanitária e Ambiental, Jo?o Pessoa, Brazil, 2001, CD-ROM.
[23]
M. D. S. Pereira and B. F. Dos Reis, “Determina??o espectrofotométrica de alumínio em concentrados salinos utilizados em hemodiálise empregando pré-concentra??o em fluxo,” Química Nova, vol. 25, no. 6, pp. 931–934, 2002.
[24]
E. Merian and T. W. C. Clarkson, Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, VCH, Weinheim, Germany, 2nd edition, 1991.
[25]
C. L. Echart and S. Cavalli-Molina, “Fitotoxicidade do alumínio: efeitos, mecanismo de tolerancia e seu controle genético,” Ciência Rural, vol. 31, no. 3, pp. 531–541, 2001.
[26]
L. Di Bernardo, A. Di Bernardo, and P. L. Centurione Filho, Ensaios de Tratabilidade de água e dos Resíduos Gerados em Esta??es de Tratamento de água, RiMa Editora, S?o Carlos, Brazil, 1st edition, 2002.
[27]
A. B. D. Barbosa, M. A. Morato, M. N. Borges, et al., “Plano de monitoramento da esta??o de tratamento rio Descoberto,” Relatório Interno, CAESB, Brasília, Brazil, 2003.
[28]
J. E. G. Campos and F. H. Freitas-Silva, “Geologia,” in Olhares Sobre o Lago Paranoá, F. O. Fonseca, Ed., Secretaria do Meio Ambiente e Recursos Hídricos, Brasília, Brazil, 2001.
[29]
F. H. Freitas-Silva and J. E. G. Campos, “Geologia do parque nacional de Brasília-DF,” Boletim de Geociências do Centro-Oeste, vol. 18, no. 1-2, pp. 32–43, 1995.
[30]
J. E. G. Campos and F. H. Freitas Silva, Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal, vol. 4 of Relatório Técnico Hidrogeologia do Distrito Federal, IEMA/UnB, Brasília, Brazil, 1998.
[31]
R. C. A. Moreira, E. M. Guimar?es, G. R. Boaventura, A. M. Momesso, and G. L. De Lima, “Estudo geoquímico da disposi??o de lodo de ETA em área degradada,” Química Nova, vol. 32, no. 8, pp. 2085–2093, 2009.
[32]
APHA-AWWA-WPCF, Standard Methods for Examination of Water and Wastewater, APHA-AWWA-WPCF, Washington, DC, USA, 20th edition, 1998.
[33]
W. M. Telford, L. P. Geldart, R. E. Sheriff, and D. A. Keys, Applied Geophysics, Cambridge University Press, Cambridge, UK, 1985.
[34]
C. W. Fetter, Applied Hydrogeology, Macmillan College Publishing Company, New York, NY, USA, 3rd edition, 1994.
[35]
O. Koefoed, Resistivity Sounding Measurements, Elsevier, Amsterdam, The Netherlands, 1979.
[36]
R. Van Nostrand and K. L. Cook, Interpretation of Resistivity Data; Geological Survey, Professional Paper 499, United States Geological Survey, Washington, DC, USA, 1966.
[37]
Embrapa, Manual de Métodos de Análise de Solo, Ministério da Agricultura e do Abastecimento, Rio de Janeiro, Brazil, 2nd edition, 1997.
[38]
G. R. Boaventura, “Performance do Espectr?metro de Emiss?o com Plasma (ICP), spectroflame FVM03, para determina??o de 20 elementos químicos nas amostras de referência geoquímica DNC-1, W-2, UNB-B1 e UNB-G2,” in Proceedings of the III Congresso Brasileiro de Geoquímica, vol. 2, pp. 423–426, S?o Paulo, Brazil, 1991.
[39]
G. M. Rohde, Geoquímica Ambiental e Estudos de Impacto, Editora Signus, S?o Paulo, Brazil, 2nd edition, 2004.
[40]
S. A. Mingoti, Análise de Dados Através de Métodos de Estatística Multivariada—Uma Abordagem Aplicada, Editora UFMG, Belo Horizonte, Brazil, 1st edition, 2007.
[41]
U. F?rstner, “Contaminated sediments,” in Lecture Notes in Earth Sciences, S. Bhattacharji, G. M. Fridman, H. J. Neugebauer, et al., Eds., vol. 21, pp. 1–157, Springer, Berlin, Germany, 1989.
[42]
Gradient, SOUNDER: Program for Interactive Multi-Layer Resistivity Modeling, Gradient Geology and Geophysics, Missoula, Mont, USA, 1991.
[43]
M. H. Loke, RES2DINV 3.2 for WINDOWS; Rapid 2D Resistivity & IP Inversion Using the Least-Squares Method, Geoelectrical Imaging 2D & 3D, 1997.
[44]
Associa??o Brasileira de Normas Técnicas (ABNT), Resíduos Sólidos—Classifica??o, vol. 2 of NBR 10004, ABNT, Rio de Janeiro, Brazil, 2004.
[45]
W. Schellmann, “On the geochemistry of laterites,” Chemie der Erde, vol. 45, pp. 39–52, 1980.
[46]
M. L. Costa, “Introdu??o ao intemperismo laterítico e à lateriza??o,” in Prospec??o Geoquímica-Depósitos Minerais Metálicos, N?o-Metálicos, óleo e Gás, O. A. B. Licht, C. S. B. Mello, and C. R. Silva, Eds., p. 788, Sociedade Brasileira de Geoquímica / CPRM, Rio de Janeiro, Brazil, 2007.
[47]
L. R. G. Guilherme, J. J. Marques, M. A. P. Pierangeli, D. Q. Zuliane, M. L. Campos, and G. Marchi, “Elementos-tra?o em solos e sistemas aquáticos,” Tópicos em Ciência do Solo, vol. 4, pp. 345–390, 2005.
[48]
M. A. Cambri, Tese de Doutorado em Agronomia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de S?o Paulo, Piracicaba, Brazil, 2004.
[49]
L. L. Leite, C. R. Martin, and M. Haridasan, Anais do Simpósio Nacional sobre Recupera??o de áreas Degradadas, Curitiba, Brazil, 1992.
[50]
R. M. M. Santos, M. M. Souza, R. C. A. Moreira, K. Hatting, and P. Q. Araújo, “Monitoramento como instrumento de gest?o de águas subterraneas no Distrito Federal,” in Resumos do XI Congresso Brasileiro de Geoquímica, Atibaia, Brazil, 2007.
[51]
G. R. Boaventura and A. L. S. Freitas, “Inorganic parameters as water quality indicators in acidic groundwater in a tropical region—Brasilia-DF (Brazil),” Water, Air, and Soil Pollution, vol. 171, no. 1–4, pp. 135–151, 2006.
[52]
R. R. Anand and M. Paine, “Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration,” Australian Journal of Earth Sciences, vol. 49, no. 1, pp. 3–162, 2002.
[53]
Canadá, Guidelines for Canadian Drinking Water Quality, Federal Provincial Advisory Committee on Environmental and Occupational Health and Welfare, Ottawa, Canada, 1993.
[54]
R. Pitt, S. Clark, and K. Parmer, Potential Groundwater Contamination from Intentional and Nonintentional Stormwater Infiltration, Diane Publishing, 1994.