We investigated the changes in faunal activities as measures of the ecological functions of soils impacted by potentially toxic metals (PTMs) under urban, industrial, agricultural, and natural uses. Concentrations and distributions of Zn, Cd, Pb, Cu, Mn, and Fe were estimated by sequential chemical extractions, while relicts and present faunal activities were studied by micromorphological analyses. Urban and natural lands were contaminated with Pb, Cd, and Zn. Microarthropods and fungi are observed to be active in the litter decomposition in natural, agricultural and urban lands which indicates that total concentration of PTMs in soils is not a good indicator to evaluate the limitations of PTMs to fauna activity. Metals immobilization on carbonates and Fe/Mn oxides, and fertilizations reduced the negative effects of metals on faunal activity. Micromorphological analyses showed the impacts of metal on soil ecological functions in industrial site, where the surface soils are devoid of any evidence of faunal activity; likely due to high proportion of Pb and Zn in organic components. Therefore, the impacts of metals in soil fauna activities, hence ecological functions of soils, are best evaluated by the knowledge of metal partitioning on solid phases in combination with observations of fauna activities using micromorphological techniques. 1. Introduction The major anthropogenic sources of potentially toxic metals (PTMs) in soil are urbanization [1, 2], industrialization [3, 4] and agricultural practices [5, 6]. In urban areas, atmospheric deposition of particulate matter contributes to the diffuse pollution of surface soils [7]. Atmospheric depositions from industrial plants impact any soils regardless of land use [8, 9]. Spillage of various liquids and industrial wastes are the principal sources of PTMs accumulation in surface and subsurface soils around industrial areas. In agricultural ecosystems, metals reach the soil from applications of liquid and solid manure or inorganic fertilizers [10, 11]. Mobility of PTMs in soils depends on the retention capacity of the soil and chemical properties of the metal [12]. Metals can bind to soil organic matter (SOM), carbonates, oxides, and hydroxides of Mn and Fe or remain in soluble and mobile forms dissolved in the soil solution. Sequential chemical extraction procedures are used to determine the partitioning of metals in various solid phases in soils [13, 14]. Although the use of micromorphological analysis to evaluate the role of soil organisms in soil genesis in the last decade has been effective [15, 16], its
References
[1]
J. Chronopoulos, C. Haidouti, A. Chronopoulou-Sereli, and I. Massas, “Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece,” Science of the Total Environment, vol. 196, no. 1, pp. 91–98, 1997.
[2]
D. S. Manta, M. Angelone, A. Bellanca, R. Neri, and M. Sprovieri, “Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy,” Science of the Total Environment, vol. 300, no. 1–3, pp. 229–243, 2002.
[3]
P. K. Govil, G. L. N. Reddy, and A. K. Krishna, “Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India,” Environmental Geology, vol. 41, no. 3-4, pp. 461–469, 2001.
[4]
O. Abollino, M. Aceto, M. Malandrino, E. Mentasti, C. Sarzanini, and R. Barberis, “Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles,” Environmental Pollution, vol. 119, no. 2, pp. 177–193, 2002.
[5]
H. E. G?bler and J. Schneider, “Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany,” Environmental Geology, vol. 39, no. 7, pp. 774–782, 2000.
[6]
A. Navas and H. Lindhorfer, “Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain),” Environment International, vol. 29, no. 1, pp. 61–68, 2003.
[7]
S. Norra, M. Lanka-Panditha, U. Kramar, and D. Stüben, “Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany,” Applied Geochemistry, vol. 21, no. 12, pp. 2064–2081, 2006.
[8]
K. D. Van Den Hout, D. J. Bakker, J. J. M. Berdowski et al., “The impact of atmospheric deposition of non-acidifying substances on the quality of European forest soils and the North Sea,” Water, Air, and Soil Pollution, vol. 109, no. 1–4, pp. 357–396, 1999.
[9]
A. Colgan, P. K. Hankard, D. J. Spurgeon, C. Svendsen, R. A. Wadsworth, and J. M. Weeks, “Closing the loop: a spatial analysis to link observed environmental damage to predicted heavy metal emissions,” Environmental Toxicology and Chemistry, vol. 22, no. 5, pp. 970–976, 2003.
[10]
F. A. Nicholson, S. R. Smith, B. J. Alloway, C. Carlton-Smith, and B. J. Chambers, “An inventory of heavy metals inputs to agricultural soils in England and Wales,” Science of the Total Environment, vol. 311, no. 1–3, pp. 205–219, 2003.
[11]
J. A. Rodríguez Martín, M. L. Arias, and J. M. Grau Corbí, “Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations,” Environmental Pollution, vol. 144, no. 3, pp. 1001–1012, 2006.
[12]
R. Moral, R. J. Gilkes, and M. M. Jordán, “Distribution of heavy metals in calcareous and non-calcareous soils in Spain,” Water, Air, and Soil Pollution, vol. 162, no. 1–4, pp. 127–142, 2005.
[13]
A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry, vol. 51, no. 7, pp. 844–851, 1979.
[14]
Z. S. Ahnstrom and D. R. Parker, “Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium,” Soil Science Society of America Journal, vol. 63, no. 6, pp. 1650–1658, 1999.
[15]
H. Khademi and A. R. Mermut, “Micromorphology and classification of Argids and associated gypsiferous Aridisols from central Iran,” Catena, vol. 54, no. 3, pp. 439–455, 2003.
[16]
F. Khormali, A. Abtahi, and G. Stoops, “Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran,” Geoderma, vol. 132, no. 1-2, pp. 31–46, 2006.
[17]
P. Bullock, N. Fedoroff, A. Jongerius, G. Stoops, T. Tursma, and U. Babel, Handbook for Soil Thin Section Description, Waine Research Publications, Wolverhampton, UK, 1985.
[18]
E. A. Fitzpatrick, Soil Microscopy and Micromorphology, Wiley, Chichester, UK, 1993.
[19]
G. García, E. Lorente, and A. Faz, “Elemental characterization of contaminated soils and sediments from the industrial area of “EL Hondon” (Cartagena, SE Spain),” in Sustainable Use and Management of Soil in Arid and Semiarid Regions, A. Faz, R. Ortiz, and A. R. Mermut, Eds., vol. 2, pp. 416–417, 2002.
[20]
J. A. Acosta, S. Martínez-Martinez, A. Faz, G. García, J. M. Van Mourik, and J. M. Verstraten, “Spatial distribution of heavy metals in the soils of cartagena (SE Spain): the influence of the use of soils,” Catena, vol. 1, pp. 407–420, 2005.
[21]
A. Faz, G. García, R. Arnaldos, and L. Carrasco, “Reclamation of polypolluted soils from the industrial area of Cartagena. (SE Spain): phytoaccumulation and phytostabilization,” in Proceedings of the 1st European Bioremediation conference, Polytechnic University, Crete, Greece, 2001.
[22]
FAO-ISRIC, Guidelines for Soil Description, F. A. O., Roma, Italy, 4th edition, 2006.
[23]
WRB, World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication, F. A. O., Roma, Italy, 2006.
[24]
M. Peech, “Hidrogen-ion activity,” in Methods of Soil Analysis, C. A. Black, Ed., vol. 2, pp. 914–916, American Society of Agronomy, Madison, Wis, USA, 1965.
[25]
Wesemael, “Organic carbon determination,” in Compilation of Procedures for Practical Classes in Soil Chemistry, L. Hoitinga and I. van Voorthuijsen , Eds., Fysisch Geografisch & Bodemkundig Laboratorium, Universiteit van Amsterdam, The Netherlands, 1995.
[26]
L. E. Allison, “Organic carbon by reduction of chromic acid,” Soil Science, vol. 40, pp. 311–320, 1935.
[27]
Rhoades, in Compilation of Procedures for Practical Classes in Soil Chemistry, L. Hoitinga and I. van Voorthuijsen , Eds., Fysisch Geografisch & Bodemkundig Laboratorium, Universiteit van Amsterdam, The Netherlands, 1997.
[28]
M. Bettinelli, G. M. Beone, S. Spezia, and C. Baffi, “Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis,” Analytica Chimica Acta, vol. 424, no. 2, pp. 289–296, 2000.
[29]
W. S. Bowman, G. H. Faye, R. Sutarno, J. A. McKeague, and H. Kodama, “Soil samples SO-1, SO-2, SO-3 and SO-4—certified reference materials,” CANMET Report 79-3, CANMET Mining and Mineral Sciences Laboratories, Ottawa, Canada, 1979.
[30]
J. M. Van Mourik, “The use of micromorphology in soil pollen analysis the interpretation of the pollen content of slope deposits in Galicia, Spain,” Catena, vol. 35, no. 2-4, pp. 239–257, 1999.
[31]
J. M. Van Mourik, “Pollen and spores, preservation in ecological settings,” in Palaeobiology II, E. G. Briggs and P. R. Crowther, Eds., pp. 315–318, Blackwell Science, 2001.
[32]
M. J. Martínez-Sánchez and C. Pérez-Sirvent, Niveles de Fondo y Niveles Genéricos de Referencia de Metales Pesados en Suelos de la Región de Murcia, Murcia, Spain, 2007.
[33]
M. Romic and D. Romic, “Heavy metals distribution in agricultural topsoils in urban area,” Environmental Geology, vol. 43, no. 7, pp. 795–805, 2003.
[34]
M. J. Norusis, SPSS for Windows Base System User’s Guide Release 6.0, SPSS, Chicago, Ill, USA, 1993.
[35]
E. A. FizPatrick, Soils: Their Formation, Clasification and Distribution, Longman, New York, NY, USA, 1980.
[36]
T. P. Urbano, Tratado de Fitotecnia General, Mundi Prensa, Madrid, Spain, 2nd edition, 1995.
[37]
J. Porta, M. López, and C. Roquero, Edafología Para la Agricultura y el Medio Ambiente, Mundi Prensa, Madrid, Spain, 2nd edition, 1999.
[38]
D.C. Adriano, “Zinc,” in Trace Elements in the Terrestrial Environment, D.C. Adriano, Ed., pp. 421–469, Springer, New York, NY, USA, 1986.
[39]
N. L. Ward, “Multielement contamination of British motorway environments,” in Proceedings of the International Conference on Heavy Metals in the Environment, J. P. Vernet, Ed., vol. 2, CEP Consultants, Geneva, Switzerland, September 1989.
[40]
M. Imperato, P. Adamo, D. Naimo, M. Arienzo, D. Stanzione, and P. Violante, “Spacial distribution of heavy metals in urban soils of NaplesCity (Italy),” Environmental Pollution, vol. 124, pp. 247–256, 2003.
[41]
J. J. Capel Molina, “El clima del territorio de cartagena,” in Historia de Cartagena, F. P Pérez, C. G Pi?arés, P. G Reverte, F. L Hernández, and A. Alcolea, Eds., pp. 171–192, 1986.
[42]
M. Hutton and C. Symon, “The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities,” Science of the Total Environment, vol. 57, pp. 129–150, 1986.
[43]
T. Kunito, K. Saeki, H. Oyaizu, and S. Matsumoto, “Influences of copper forms on the toxicity to microorganisms in soils,” Ecotoxicology and Environmental Safety, vol. 44, no. 2, pp. 174–181, 1999.
[44]
Y. Wang, J. Shi, H. Wang, Q. Lin, X. Chen, and Y. Chen, “The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter,” Ecotoxicology and Environmental Safety, vol. 67, no. 1, pp. 75–81, 2007.
[45]
G. S. Francis and P. M. Fraser, “The effects of three earthworm species on soil macroporosity and hydraulic conductivity,” Applied Soil Ecology, vol. 10, no. 1-2, pp. 11–19, 1998.
[46]
M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” Journal of Environmental Quality, vol. 31, no. 1, pp. 109–120, 2002.
[47]
S. P. McGrath, F. J. Zhao, and E. Lombi, “Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils,” Plant and Soil, vol. 232, no. 1-2, pp. 207–214, 2001.
[48]
E. F. Dijkstra, J. J. Boon, and J. M. Van Mourik, “Analytical pyrolysis of a soil profile under Scots pine,” European Journal of Soil Science, vol. 49, no. 2, pp. 295–304, 1998.
[49]
E. F. Dijkstra and J. M. Van Mourik, “Reconstruction of recent forest dynamics based on pollen analysis and micro morphological studies of young acid forest soils under Scots pine plantations,” Acta Botanica Neerlandica, vol. 45, no. 3, pp. 393–410, 1996.