全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiobjective Optimization of Irreversible Thermal Engine Using Mutable Smart Bee Algorithm

DOI: 10.1155/2012/652391

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new method called mutable smart bee (MSB) algorithm proposed for cooperative optimizing of the maximum power output (MPO) and minimum entropy generation (MEG) of an Atkinson cycle as a multiobjective, multi-modal mechanical problem. This method utilizes mutable smart bee instead of classical bees. The results have been checked with some of the most common optimizing algorithms like Karaboga’s original artificial bee colony, bees algorithm (BA), improved particle swarm optimization (IPSO), Lukasik firefly algorithm (LFFA), and self-adaptive penalty function genetic algorithm (SAPF-GA). According to obtained results, it can be concluded that Mutable Smart Bee (MSB) is capable to maintain its historical memory for the location and quality of food sources and also a little chance of mutation is considered for this bee. These features were found as strong elements for mining data in constraint areas and the results will prove this claim. 1. Introduction The Atkinson cycle was designed by James Atkinson in 1882 [1]. This engine has two important advantages comparing to other engines; it is one of the most heat efficient as well as high expansion ratio cycles. Generally, four procedures called Intake, Compression, Power, and Exhaust take place in cycle per turn of crankshaft. In fact a classic Atkinson engine is a four-stroke engine and, in a same condition, it can reach a higher efficiency comparing to Otto cycle. Recently, researchers focused on analyzing and optimizing Atkinson cycle using different optimization techniques and intelligent controlling systems. Leff [2] determined the thermal efficiency of a reversible Atkinson cycle at maximum work output, Al-Sarkhi et al. [3] compared the performance characteristic curves of the Atkinson cycle to Miller and Brayton cycles using numerical examples and simulation techniques. Wang and Hou [4] studied the performance of Atkinson cycle in variable temperature heat reservoirs. Hou [5] investigated the effects of heat leak due to percentage of fuels energy, friction, and variable specific heats of working fluid. Here we proposed a new metaheuristic algorithm to analyze the performance of an air standard Atkinson cycle with heat transfer losses, friction, and variable specific heats of the working fluid. Metaheuristic algorithms are population-based methods working with a set of feasible solutions and trying to improve them gradually. These algorithms can be divided into two main parts: evolutionary algorithms (EAs) which attempt to simulate the phenomenon of natural evolution and swarm intelligence base

References

[1]  C. Lyle Cummins, Internal Fire: The Internal-Combustion Engine 1673–1900, Carnot Press, Wilsonville, Ore, USA, 2000.
[2]  H. S. Leff, “Thermal efficiency at maximum power output: new results for old heat engine,” American Journal of Physics, vol. 55, pp. 602–610, 1987.
[3]  A. Al-Sarkhi, B. A. Akash, J. O. Jaber, M. S. Mohsen, and E. Abu-Nada, “Efficiency of miller engine at maximum power density,” International Communications in Heat and Mass Transfer, vol. 29, no. 8, pp. 1159–1167, 2002.
[4]  P. Y. Wang and S. S. Hou, “Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions,” Energy Conversion and Management, vol. 46, no. 15-16, pp. 2637–2655, 2005.
[5]  S. S. Hou, “Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations,” Energy Conversion and Management, vol. 48, no. 5, pp. 1683–1690, 2007.
[6]  J. Dréo, P. Siarry, A. Pétrowski, and E. Taillard, Metaheuristics for Hard Optimization, Springer, Heidelberg, Germany, 2006.
[7]  Z. Michalewicz, “Heuristic methods for evolutionary computation techniques,” Journal of Heuristics, vol. 1, no. 2, pp. 177–206, 1996.
[8]  X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, Beckington, UK, 2008.
[9]  J. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Mich, USA, 1975.
[10]  L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY, USA, 1991.
[11]  B. Tessema and G. G. Yen, “A self adaptive penalty function based algorithm for performing constrained optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, G. G. Yen and M. Simon, Eds., pp. 246–253, IEEE Publications, Vancouver, Canada, 2006.
[12]  A. C. C. Lemonge and H. J. C. Barbosa, “An adaptive penalty scheme in genetic algorithms for constrained optimization problems,” in Proceedings of the Genetic and Evolutionary Computation Conference, G. Paun, Ed., pp. 287–294, ACM Press, New York, NY, USA, 2002.
[13]  S. M. Saab, N. Kamel, T. El-Omari, and H. Owaied, “Developing optimization algorithm using artificial Bee Colony system,” Ubiquitous Computing and Communication Journal, vol. 4, pp. 391–396, 2009.
[14]  M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization by a colony of cooperating agents,” in Transactions on Systems Man and Cybernetics, W. Pedrycz, Ed., pp. 29–41, IEEE Publications, Alberta, Canada, 1996.
[15]  J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, L. M. LeCam and J. Neyman, Eds., pp. 1942–1948, IEEE Publications, Piscataway, NJ, USA, 1995.
[16]  J. Kennedy, “Minds and cultures: particle swarm implications, Socially Intelligent Agents,” Ubiquitous Computing and Communication Journal, vol. 23, pp. 67–72, 1997.
[17]  Y.-P. Bu, Z. Wei, and J.-S. You, “An improved PSO algorithm and its application to grid scheduling problem,” in Proceedings of the International Symposium on Computer Science and Computational Technology (ISCSCT '08), pp. 352–355, IEEE, 2008.
[18]  X. S. Yang and S. Deb, “Cuckoo search via Levy flights,” in Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBIC '09), F. Rothlauf, Ed., pp. 210–214, IEEE Publications, India, December 2009.
[19]  S. ?ukasik and S. Zak, “Firefly algorithm for continuous constrained optimization tasks,” in Proceedings of the International Conference on Computer and Computational Intelligence, N. T. Nguyen, R. Kowalczyk, and S. M. Chen, Eds., vol. 5796 of Lecture Notes in Computer Science, pp. 97–106, Springer, Wroc?aw, Poland, 2009.
[20]  X.-S. Yang, “Firefly algorithms for multimodal optimization,” in Proceedings of the Stochastic Algorithms: Foundations and Applications, vol. 5792 of Lecture Notes in Computer Science, pp. 169–178, Springer, Sapporo, Japan, 2009.
[21]  D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial Bee Colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.
[22]  D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Applied Soft Computing Journal, vol. 8, no. 1, pp. 687–697, 2008.
[23]  S. Camazine and J. Sneyd, “A model of collective nectar source selection by honey bees: self-organization through simple rules,” Journal of Theoretical Biology, vol. 149, no. 4, pp. 547–571, 1991.
[24]  D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S Rahim, and M. Zaidi, “The bees algorithm,” Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.
[25]  T. D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, Harvard University Press, 1996.
[26]  Y. Yonezawa and T. Kikuchi, “Ecological algorithm for optimal ordering used by collective honey bee behavior,” in Proceedings of the 7th International Symposium on Micro Machine and Human Science, pp. 249–256, Nagoya, Japan, 1996.
[27]  T. Sato and M. Hagiwara, “Bee system: finding solution by a concentrated search,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3954–3959, Orlando, Fla, USA, 1997.
[28]  D. Teodorovic, Bee Colony Optimization (BCO), Ministry of Science of Serbia, Belgrade, Serbia, 2001.
[29]  H. A. Abbass, “Marriage in honey bee optimization (MBO): a haplometrosis polygynous swarming approach,” in Proceedings of the IEEE Conference on Evolutionary Computation (ICEC '01), vol. 1, pp. 207–214, IEEE Publications, Seoul, Korea, 2001.
[30]  D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Erciyes Universitey, Kayseri, Turkey, 2005.
[31]  C. S. Chong, M. Y. H. Low, A. I. Sivakumar, and K. L. Gay, “A Bee Colony Optimization Algorithm to job shop scheduling simulation,” in Proceedings of the Winter Conference, L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nichol, and R. M. Fujimoto, Eds., pp. 1954–1961, Washington, DC, USA, 2006.
[32]  N. Stanarevic, M. Tuba, and N. Bacanin, “Modified Artificial Bee Colony algorithm for constrained problems optimization,” International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 3, pp. 644–651, 2011.
[33]  S. E. Elmaghraby, H. Soewandi, and M. J. Yao, “Chance-constrained programming in activity networks: a critical evaluation,” European Journal of Operational Research, vol. 131, no. 2, pp. 440–458, 2001.
[34]  F. Hillier, “Chance-constrained programming with 0-1 or bounded continuous decision variables,” Journal of Management Science, vol. 14, pp. 34–57, 1967.
[35]  Y. Seppala, “Constructing sets of uniformly tighter linear approximations for a chance-constraint,” Journal of Management Science, vol. 17, pp. 736–749, 1971.
[36]  Y. Sepp?l? and T. Orpana, “Experimental study on the efficiency and accuracy of a chance-constrained programming algorithm,” European Journal of Operational Research, vol. 16, no. 3, pp. 345–357, 1984.
[37]  K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2–4, pp. 311–338, 2000.
[38]  D. Karaboga and B. Basturk, “Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems,” in Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, C. Ozturk, Ed., pp. 789–798, Springer, Berlin, Germany, 2007.
[39]  R. Ebrahimi, “Performance of an Endoreversible Atkinson cycle with variable specific heat ratio of working fluid,” American Journal of Science, vol. 6, pp. 12–17, 2010.
[40]  Y. Ge, L. Chen, and F. Sun, “Finite time thermodynamic modeling and analysis for an irreversible atkinson cycle,” Thermal Science, vol. 14, no. 4, pp. 887–896, 2010.
[41]  A. Al-Sarkhi, B. Akash, E. Abu-Nada, and I. Al-Hinti, “Efficiency of atkinson engine at maximum power density using temperature dependent specific heats,” Jordan Journal of Mechanical and Industrial Engineering, vol. 2, pp. 71–75, 2005.
[42]  C. Lingen, Z. Wanli, and S. Fenguri, “Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles,” Applied Energy, vol. 84, no. 5, pp. 512–525, 2007.
[43]  J. Bae J, P. Y. Won, J. J. Rin, and K. Y. S. Lee, “An improved particle swarm optimization for nonconvex economic dispatch problems,” IEEE, vol. 25, pp. 156–166, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133