To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd) and lead (Pb) for 48?h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50?μg cm?2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32?μg cm?2. For Cd at 0.75?μg cm?2, in the micronucleus test (detects chromosomal aberrations), significant increases ( ) in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks), tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29?μg cm?2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects. 1. Introduction Earthworms are primary decomposers of soil organic matter and, thus, aid in improving soil quality and fertility. Earthworms are a dominant component of the soil faunal biomass, providing 10–200?g?m?2 [1]. Because of their ecological importance, earthworms are now adopted as an indicator organism for the assessment of potential impact of chemicals to soil organisms. In agricultural operations worldwide, there is increasing concern about widespread soil contamination by chemicals and heavy metals. Cadmium (Cd) and lead (Pb) are two of the more toxic heavy metals released into soil by industrial processes. They are of particular concern because they have no biological function but are toxic to living organisms and pose a risk to human and environmental health. In polluted soil, earthworms are exposed to these pollutants both dermally and through gastrointestinal tract absorption from soil. The earthworm immune system is generally sensitive to heavy metal exposure. Exposure of earthworms to chemicals via the dermal route affects coelomocytes directly and, therefore, have a major influence on the health of earthworms. Therefore, monitoring earthworm immune competence can be regarded as a more sensitive and early-warning biomarker of ecosystem health. Inorganic Pb is classified as a group IIA carcinogen, which is a probable human carcinogen [2]. Cd is classified as a group I human carcinogen [3] and an animal carcinogen [4]. In addition, Cd interferes with DNA repair, which can lead to mutations [5] and eventually carcinogenesis [6]. Therefore, assessment of DNA damage is an important aspect of toxicity testing. Earthworm
References
[1]
H. Kula and O. Larink, “Tests on the earthworms Eisenia fetida and Aporrectodea caliginosa,” in Handbook of Soil Invertebrate Toxicity Tests, H. Lokke and C. A. M. van Gestel, Eds., pp. 95–112, John Wiley & Sons, Chichester, UK, 1998.
[2]
IARC (International Agency for Research on Cancer), “Inorganic and organic lead compounds,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 87, pp. 1–471, IARC, Lyon, France, 2006.
[3]
IARC (International Agency for Research on Cancer), “Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry,” in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 58, pp. 119–237, IARC, Lyon, France, 1993.
[4]
M. Waisberg, P. Joseph, B. Hale, and D. Beyersmann, “Molecular and cellular mechanisms of cadmium carcinogenesis,” Toxicology, vol. 192, no. 2-3, pp. 95–117, 2003.
[5]
L. R. Shugart, “DNA damage as a biomarker of exposure,” Ecotoxicology, vol. 9, no. 5, pp. 329–340, 2000.
[6]
B. Kurelec, “The genotoxic disease syndrome,” Marine Environmental Research, vol. 35, no. 4, pp. 341–348, 1993.
[7]
N. Fugère, P. Brousseau, K. Krzystyniak, D. Coderre, and M. Fournier, “Heavy metal-specific inhibition of phagocytosis and different in vitro sensitivity of heterogeneous coelomocytes from Lumbricus terrestris (Oligochaeta),” Toxicology, vol. 109, no. 2-3, pp. 157–166, 1996.
[8]
N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988.
[9]
S. Cotelle and J. F. Férard, “Comet assay in genetic ecotoxicology: a review,” Environmental and Molecular Mutagenesis, vol. 34, no. 4, pp. 246–255, 1999.
[10]
S. A. Reinecke and A. J. Reinecke, “The comet assay as biomarker of heavy metal genotoxicity in earthworms,” Archives of Environmental Contamination and Toxicology, vol. 46, no. 2, pp. 208–215, 2004.
[11]
S. Sanchez-Galan, A. R. Linde, F. Ayllon, and E. Garcia-Vazquez, “Induction of micronuclei in eel (Anguilla anguilla L.) by heavy metals,” Ecotoxicology and Environmental Safety, vol. 49, no. 2, pp. 139–143, 2001.
[12]
T. Cavas, N. N. Garanko, and V. V. Arkhipchuk, “Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate,” Food and Chemical Toxicology, vol. 43, no. 4, pp. 569–574, 2005.
[13]
G. S. Eyambe, A. J. Goven, L. C. Fitzpatrick, B. J. Venables, and E. L. Cooper, “A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies,” Laboratory Animals, vol. 25, no. 1, pp. 61–67, 1991.
[14]
P. Brousseau, N. Fugère, J. Bernier et al., “Evaluation of earthworm exposure to contaminated soil by cytometric assay of coelomocytes phagocytosis in Lumbricus terrestris (Oligochaeta),” Soil Biology and Biochemistry, vol. 29, no. 3-4, pp. 681–684, 1997.
[15]
F. Fourie, S. A. Reinecke, and A. J. Reinecke, “The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay,” Ecotoxicology and Environmental Safety, vol. 67, no. 3, pp. 361–368, 2007.
[16]
J. Homa, E. Olchawa, S. R. Stürzenbaum, A. John Morgan, and B. Plytycz, “Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions,” Environmental Pollution, vol. 135, no. 2, pp. 275–280, 2005.
[17]
J. Nahmani, M. E. Hodson, and S. Black, “A review of studies performed to assess metal uptake by earthworms,” Environmental Pollution, vol. 145, no. 2, pp. 402–424, 2007.
[18]
W. C. Ma, “The influence of soil properties and worm related factors on the concentration of heavy metals in earthworms,” Pedobiologia, vol. 24, pp. 109–119, 1982.
[19]
L. Z. Li, D. M. Zhou, P. Wang, and X. S. Luo, “Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction,” Ecotoxicology and Environmental Safety, vol. 71, no. 3, pp. 632–637, 2008.
[20]
J. M. Conder and R. P. Lanno, “Weak-electrolyte extractions and ion-exchange membranes as surrogate measures of cadmium, lead and zinc bioavailability to Eisenia fetida in artificial soils,” Chemosphere, vol. 41, pp. 1659–1668, 2002.
[21]
J. A. Heddle, M. C. Cimino, M. Hayashi et al., “Micronuclei as an index of cytogenetic damage: past, present, and future,” Environmental and Molecular Mutagenesis, vol. 18, no. 4, pp. 277–291, 1991.
[22]
V. Ka?uba and R. Rozgaj, “Micronucleus distribution in human peripheral blood lymphocytes treated in vitro with cadmium chloride in G0 and S phase of the cell cycle,” Chemosphere, vol. 49, no. 1, pp. 91–95, 2002.
[23]
A. ?elik, “A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis,” Toxicology and Industrial Health, vol. 21, no. 10, pp. 243–248, 2005.
[24]
E. Gebhart and T. G. Rossman, “Mutagenicity, carcinogenicity, teratogenicity,” in Metals and Their Compounds in the Environment, E. Merian, Ed., pp. 617–640, Wiley-VCH, Weinheim, Germany, 1991.
[25]
A. Forni, “Comparison of chromosome aberrations and micronuclei in testing genotoxicity in humans,” Toxicology Letters, vol. 72, no. 1-3, pp. 185–190, 1994.
[26]
A. Hartwig, “Role of DNA repair inhibition in lead- and cadmium-induced genotoxicity: a review,” Environmental Health Perspectives, vol. 102, supplement 3, pp. 45–50, 1994.
[27]
A. Hartwig, “Carcinogenicity of metal compounds: possible role of DNA repair inhibition,” Toxicology Letters, vol. 102-103, pp. 235–239, 1998.
[28]
R. D. Snyder, “Role of active oxygen species in metal-induced DNA strand breakage in human diploid fibroblasts,” Mutation Research, vol. 21, pp. 359–365, 1988.
[29]
T. Ochi and M. Ohsawa, “Participation of active oxygen species in the induction of chromosomal aberrations by cadmium chloride in cultured Chinese hamster cells,” Mutation Research, vol. 143, no. 3, pp. 137–142, 1985.