全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential Use of Organic- and Hard-Rock Mine Wastes on Aided Phytostabilization of Large-Scale Mine Tailings under Semiarid Mediterranean Climatic Conditions: Short-Term Field Study

DOI: 10.1155/2012/895817

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000?ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100?t?ha?1 dry weight, d.w.) and grape residues (200?t?ha?1 d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20?cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments. 1. Introduction Copper mining operations may adversely affect the environment due to deposition of large volumes of a number of hard-rock waste materials in nearby areas, such as sterile rocks, smelter slags, smelter dust, and tailings, among others. When sulfide copper ores are concentrated by flotation, approximately 80% of total wastes are tailings, which still contain a concentration of metals (i.e., Cu, Zn, Mo, Ni, Pb, Cd) and metalloids (i.e., As) that may pose environmental risks after inadequate deposition and management [1–6]. Currently, tailings are deposited in artificial dumps, or tailings storage facilities (TSFs), where fine solid particles (tailing sands) are separated from water by gravity [7]. Abandonment of postoperative TSFs under semiarid Mediterranean climatic conditions, such as in north-central Chile, led to complete water evaporation from upper tailings [7]. Without proper closure management, this fine, homogenous, and noncohesive material is left exposed to physical and chemical environmental forces [1, 8], causing erosion by wind. Deposition of metal/metalloid-rich tailings into nearby soils and surface waters may pose risks to human health, agricultural activities, and

References

[1]  A. D. Bradshaw, “The reconstruction of ecosystems,” Journal of Applied Ecology, vol. 20, no. 1, pp. 1–17, 1983.
[2]  J. McCall, J. Gunn, and H. Struik, “Photo interpretive study of recovery of damaged lands near the metal smelters of Sudbury, Canada,” Water, Air, and Soil Pollution, vol. 85, no. 2, pp. 847–852, 1995.
[3]  R. Badilla-Ohlbaum, R. Ginocchio, P. H. Rodríguez et al., “Relationship between soil copper content and copper content of selected crop plants in central Chile,” Environmental Toxicology and Chemistry, vol. 20, no. 12, pp. 2749–2757, 2001.
[4]  R. Ginocchio, P. Sánchez, L. M. de la Fuente et al., “Agricultural soils spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation,” Environmental Toxicology and Chemistry, vol. 25, no. 3, pp. 712–718, 2006.
[5]  M. O. Mendez and R. M. Maier, “Phytoremediation of mine tailings in temperate and arid environments,” Reviews in Environmental Science and Biotechnology, vol. 7, no. 1, pp. 47–59, 2008.
[6]  R. Ginocchio, L. M. de la Fuente, P. Sánchez et al., “Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes,” Environmental Toxicology and Chemistry, vol. 28, no. 10, pp. 2069–2081, 2009.
[7]  B. Dold and L. Fontboté, “Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing,” Journal of Geochemical Exploration, vol. 74, no. 1–3, pp. 3–55, 2001.
[8]  R. Ginocchio, “Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile,” Chemosphere, vol. 41, no. 1-2, pp. 15–23, 2000.
[9]  R. Ginocchio, P. H. Rodríguez, R. Badilla-Ohlbaum, H. E. Allen, and G. E. Lagos, “Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions,” Environmental Toxicology and Chemistry, vol. 21, no. 8, pp. 1736–1744, 2002.
[10]  I. G. Petrisor, D. Dobrota, K. Komnitsas, I. Lazar, J. M. Kuperberg, and M. Serban, “Artificial inoculation—perspectives in tailings phytostabilization,” International Journal of Phytoremediation, vol. 1, no. 1, pp. 1–15, 2004.
[11]  R. de la Iglesia, D. Castro, R. Ginocchio, D. van der Lelie, and B. González, “Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps,” Journal of Applied Microbiology, vol. 100, no. 3, pp. 537–544, 2006.
[12]  N. Diaby, B. Dold, H. R. Pfeifer, C. Holliger, D. B. Johnson, and K. B. Hallberg, “Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste,” Environmental Microbiology, vol. 9, no. 2, pp. 298–307, 2007.
[13]  F. F. Munshower, Practical Handbook of Disturbed Land Revegetation, Lewis Publisher, Boca Raton, Fla, USA, 1993.
[14]  W. Krzaklewski and M. Pietrzykowski, “Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation,” Water, Air, and Soil Pollution, vol. 141, no. 1–4, pp. 125–142, 2002.
[15]  R. Ginocchio, C. Santibá?ez, P. León-Lobos, S. Brown, and A. J. M. Baker, “Sustainable rehabilitation of copper mine tailings in Chile through phytostabilization: more than plants,” in Proceedings of the 2nd International Seminar on Mine Closure, A. Fourie, M. Tibbet, and J. Wiertz, Eds., pp. 465–474, Australian Centre for Geomechanics, Santiago, Chile, 2007.
[16]  Z. H. Ye, Z. Y. Yang, G. Y. S. Chan, and M. H. Wong, “Growth response of Sesbania rostrata and S. cannabina to sludge-amended lead/zinc mine tailings. A greenhouse study,” Environment International, vol. 26, no. 5-6, pp. 449–455, 2001.
[17]  Z. Y. Yang, J. G. Yuan, G. R. Xin, H. T. Chang, and M. H. Wong, “Germination, growth, and nodulation of Sesbania rostrata grown in Pb/Zn mine tailings,” Environmental Management, vol. 21, no. 4, pp. 617–622, 1997.
[18]  R. R. Brooks, “Geobotany and hyperaccumulators,” in Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration, and Phytomining, R. R. Brooks, Ed., pp. 55–94, CAB International, Wallingford, UK, 1998.
[19]  J. Vangronsveld, R. Herzig, N. Weyens et al., “Phytoremediation of contaminated soils and groundwater: lessons from the field,” Environmental Science & Pollution Research, vol. 16, no. 7, pp. 765–794, 2009.
[20]  M. Mench, N. Lepp, V. Bert et al., “Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859,” Journal of Soils and Sediments, vol. 10, no. 6, pp. 1039–1070, 2010.
[21]  S. D. Cunningham, W. R. Berti, and J. W. W. Huang, “Phytoremediation of contaminated soils,” Trends in Biotechnology, vol. 13, no. 9, pp. 393–397, 1995.
[22]  W. W. R. Berti and S. D. Cunningham, “Phytostabilization of metals,” in Phytoremediation of Toxic Metals—Using Plants to Clean Up the Environment, I. Raskin and B. D. Ensley, Eds., pp. 71–88, John Wiley & Sons, New York, NY, USA, 2000.
[23]  B. R. Sabey, R. L. Pendleton, and B. L. Webb, “Effect of municipal sewage sludge application on growth of two reclamation shrub species in copper mine spoils,” Journal of Environmental Quality, vol. 19, no. 3, pp. 580–586, 1990.
[24]  S. L. Brown, C. L. Henry, R. Chaney, H. Compton, and P. S. Devolder, “Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas,” Plant and Soil, vol. 249, no. 1, pp. 203–215, 2003.
[25]  C. Verdugo, P. Sánchez, C. Santibá?ez et al., “Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in chile: a greenhouse experiment,” International Journal of Phytoremediation, vol. 13, no. 2, pp. 107–125, 2011.
[26]  S. H. Schoenholtz, H. van Miegroet, and J. A. Burger, “A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities,” Forest Ecology and Management, vol. 138, no. 1–3, pp. 335–356, 2000.
[27]  P. H. Müller da Silva, F. Poggiani, and J. P. Laclau, “Applying sewadge sludge to Eucalyptus grandis plantations: effects on biomass production and nutrient cycling through litterfall,” Applied and Environmental Soil Science, vol. 2011, Article ID 710614, 11 pages, 2011.
[28]  U.S. EPA, “The use of soil amendments for remediation, revitalization, and reusue,” EPA 542-R-07-013, Office of Superfund Remediation and Technology Innovation (OSRTI), EPA/National Service Center for Environmental Publications, Cincinnati, Ohio, USA, 2007.
[29]  P. Jano?, J. Vávrová, L. Herzogová, and V. Pila?ová, “Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study,” Geoderma, vol. 159, no. 3-4, pp. 335–341, 2010.
[30]  A. Lopareva-Pohu, B. Pourrut, C. Waterlot et al., “Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial—part 1. Influence on soil parameters and metal extractability,” Science of the Total Environment, vol. 409, no. 3, pp. 647–654, 2011.
[31]  L. A. Junqueira-Teixeira, R. S. Berton, A. R. Coscione, and L. A. Saes, “Biosolids application on banana production: soil chemical properties and plant nutrition,” Applied and Environmental Soil Science, vol. 2011, Article ID 238185, 8 pages, 2011.
[32]  D. Nash, C. Butler, J. Cody, et al., “Effects of biosolids application on pasture and grape vines in south-eastern Australia,” Applied and Environmental Soil Science, vol. 2011, Article ID 342916, 11 pages, 2011.
[33]  C. Santibá?ez, C. Verdugo, and R. Ginocchio, “Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne,” Science of the Total Environment, vol. 395, no. 1, pp. 1–10, 2008.
[34]  W. E. Sopper, Municipal Sludge Use for Land Reclamation, Lewis Publishers, Ann Arbor, Mich, USA, 1993.
[35]  K. C. Haering, W. L. Daniels, and S. E. Feagly, “Reclaiming mined lands with biosolids, manures and papermill sludges,” in Reclamation of Drastically Disturbed Lands, R. Barnhisel, Ed., pp. 615–644, Soil Science Society of America, Madison, Wis, USA, 2000.
[36]  INDAP, Compendio de Información Ambiental, Socioeconómica y Silvoagropecuaria de la IV Región de Coquimbo: Información Para Proyectos de Desarrollo Regional, Universidad de Chile, Centro de Agricultura Ambiente (AGRIMED), INDAP-Prodecop IV Región, La Serena, Chile, 2001.
[37]  K. Lombard, M. O'Neill, A. Ulery, et al., “Fly ash and composted biosolids as a source of Fe for hybrid poplar: a greenhouse study,” Applied and Environmental Soil Science, vol. 2011, Article ID 475185, 11 pages, 2011.
[38]  CIREN, Estudio Agrológico IV Región; Descripciones de Suelos, Materiales y Símbolos, Centro de Información de Recursos Naturales, Santiago, Chile, 2005.
[39]  J. F. Casale, R. Ginocchio, and P. León-Lobos, Fitoestabilización de Depósitos de Relaves en Chile. Guía 4: Marco Ambiental y Relaves Mineros Abandonados, Documento Técnico, Centro de Investigación Minera y Metalúrgica e Instituto de Investigaciones Agropecuarias, Santiago, Chile, 2011.
[40]  USDA, Survey Laboratory: Methods Manual, Investigations Report No. 42, Version 4.0, United States Department of Agriculture, Washington, DC, USA, 2004.
[41]  K. Gold, P. León-Lobos, and M. Way, Manual de Colecta de Semillas de Plantas Silvestres para Conservación y Restauración Ecológica, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Intihuasi, La Serena, Chile, 2004, Boletín INIA no. 110.
[42]  P. M. Bleeker, A. G. L. Assun??o, P. M. Teiga, T. De Koe, and J. A. C. Verkleij, “Revegetation of the acidic, as contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses,” The Science of the Total Environment, vol. 300, no. 1–3, pp. 1–13, 2002.
[43]  A. D. Bradshaw and M. J. Chadwick, The Restoration of Land. The Ecology and Reclamation of Derelict and Degraded Land, University of California Press, Berkeley, Calif, USA, 1980.
[44]  M. Mench, S. Bussière, J. Boisson et al., “Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments,” Plant and Soil, vol. 249, no. 1, pp. 187–202, 2003.
[45]  U.S. Environmental Protection Agency, Test Methods for Evaluating Solid Waste—Physical/Chemical Methods, Method SW- 486, Department of Commerce, National Technical Information Service, Springfield, Va, USA, 1997.
[46]  A. Sadzawka, M. Carrasco, R. Grez, M. Mora, H. Flores, and A. Neaman, Métodos de Análisis Recomendados para los Suelos de Chile, Instituto de Investigaciones Agropecuárias, Santiago, Chile, 2006.
[47]  R. Vulkan, F. J. Zhao, V. Barbosa-Jefferson et al., “Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils,” Environmental Science and Technology, vol. 34, no. 24, pp. 5115–5121, 2000.
[48]  U.S. Environmental Protection Agency, “Methods for chemical analysis of water and wastes,” EPA 60014-79-020, Washington, DC, USA, 1983.
[49]  J. P. E. Anderson, “Soil respiration,” in Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, A. L. Page, Ed., pp. 837–871, Soil Science Society of America, Madison, Wisconsin, USA, 1982.
[50]  E. G. Gregorich, G. Wen, R. P. Voroney, and R. G. Kachanoski, “Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C,” Soil Biology and Biochemistry, vol. 22, no. 7, pp. 1009–1011, 1990.
[51]  G. P. Sparling, C. W. Feltham, J. Reynolds, A. W. West, and P. Singleton, “Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the KEC-factor,” Soil Biology and Biochemistry, vol. 22, no. 3, pp. 301–307, 1990.
[52]  T. H. Anderson and K. H. Domsch, “Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories,” Soil Biology and Biochemistry, vol. 22, no. 2, pp. 251–255, 1990.
[53]  J. A. D. Rienzo, F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo, InfoStat Versión 2009, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2009.
[54]  W. G. Hopkins, “A scale of magnitudes for effect statistics,” in A New View of Statistics, Internet Society of Sport Science, 2002, http://www.sportsci.org/resource/stats/effectmag.html.
[55]  M. E. Sumner, “Sodic soils: new perspectives,” in Australian Sodic Soils: Distribution, Properties and Management, R. Naidu, M. E. Sumner, and P. Rengasamy, Eds., pp. 1–34, CSIRO, Melbourne, Australia, 1995.
[56]  S. Brown, A. Svendsen, and C. Henry, “Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study,” Journal of Environmental Quality, vol. 38, no. 6, pp. 2189–2197, 2009.
[57]  D. N. Rietz and R. J. Haynes, “Effects of irrigation-induced salinity and sodicity on soil microbial activity,” Soil Biology and Biochemistry, vol. 35, no. 6, pp. 845–854, 2003.
[58]  M. Sardinha, T. Müller, H. Schmeisky, and R. G. Joergensen, “Microbial performance in soils along a salinity gradient under acidic conditions,” Applied Soil Ecology, vol. 23, no. 3, pp. 237–244, 2003.
[59]  G. Southam and T. J. Beveridge, “Enumeration of Thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil,” Applied and Environmental Microbiology, vol. 58, no. 6, pp. 1904–1912, 1992.
[60]  C. Garcia, T. Hernandez, C. Costa, and M. Ayuso, “Evaluation of the maturity of municipal waste compost using simple chemical parameters,” Communications in Soil Science and Plant Analysis, vol. 23, no. 13-14, pp. 1501–1512, 1992.
[61]  C. A. Campbell and R. P. Zentner, “Soil organic matter as influenced by crop rotations and fertilization,” Soil Science Society of America Journal, vol. 57, no. 4, pp. 1034–1040, 1993.
[62]  J. A. Pascual, C. Garcia, T. Hernandez, J. L. Moreno, and M. Ros, “Soil microbial activity as a biomarker of degradation and remediation processes,” Soil Biology and Biochemistry, vol. 32, no. 13, pp. 1877–1883, 2000.
[63]  C. Graciano, J. F. Goya, M. Arturi, C. Pérez, and J. L. Frangi, “Fertilization in a fourth rotation Eucalyptus grandis plantation with minimal management,” Journal of Sustainable Forestry, vol. 26, no. 2, pp. 155–169, 2008.
[64]  S. Brown, P. de Volder, H. Compton, and C. Henry, “Effect of amendment C : N ratio on plant richness, cover and metal content for acidic Pb and Zn mine tailings in Leadville, Colorado,” Environmental Pollution, vol. 149, no. 2, pp. 165–172, 2007.
[65]  Ch. Henry, D. Sullivan, R. Rynk, K. Dorsey, and C. Cogger, Managing Nitrogen from Biosolids, Washington State Department of Ecology, Northwest Biosolids Management Association, Wash, USA, 1999.
[66]  D. G. Brockway, D. H. Urie, P. V. Nguyen, and J. B. Hart, “Wastewater and sludge nutrient utilization in forest ecosystems,” in The Forest Alternative for Treatment and Utilization of Municipal and Industrial Wastes, D. W. Cole, C. L. Henry, and W. L. Nutter, Eds., pp. 221–245, University of Washington Press, Seattle, Wash, USA, 1986.
[67]  P. Faúndez, Actividad Microbiológica Global en Suelos Acondicionados con Biosólidos Cloacales Frescos y Compostados con Residuos Forestales, Universidad de Chile, Facultad de Ciencias Agronómicas, Santiago, Chile, 2005.
[68]  T. Gea, A. Artola, X. Sort, and A. Sánchez, “Composting of residuals produced in the catalan wine industry,” Compost Science and Utilization, vol. 13, no. 3, pp. 168–174, 2005.
[69]  D. Messerer, Sustratos Alternativos en la Propagación de Palto (Persea americana), Universidad Católica de Valparaíso, Facultad de Agronomía, Valparaíso, Chile, 1998.
[70]  C. Santibá?ez, R. Ginocchio, and M. Teresa Varnero, “Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions,” Soil Biology and Biochemistry, vol. 39, no. 6, pp. 1333–1340, 2007.
[71]  A. Navarro and F. Martínez, “Effects of sewage sludge application on heavy metal leaching from mine tailings impoundments,” Bioresource Technology, vol. 99, no. 16, pp. 7521–7530, 2008.
[72]  I. Lamy, S. Bourgeois, and A. Bermond, “Soil cadmium mobility as a consequence of sewage sludge disposal,” Journal of Environmental Quality, vol. 22, no. 4, pp. 731–737, 1993.
[73]  M. B. McBride, S. Sauvé, and W. Hendershot, “Solubility control of Cu, Zn, Cd and Pb in contaminated soils,” European Journal of Soil Science, vol. 48, no. 2, pp. 337–346, 1997.
[74]  V. Antoniadis and B. J. Alloway, “The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils,” Environmental Pollution, vol. 117, no. 3, pp. 515–521, 2002.
[75]  A. S. Coninck and A. Karam, “Impact of organic amendments on aerial biomass production, and phytoavailability and fractionation of copper in a slightly alkaline copper mine tailing,” International Journal of Mining, Reclamation and Environment, vol. 22, no. 4, pp. 247–264, 2008.
[76]  S. Klitzke and F. Lang, “Hydrophobicity of soil colloids and heavy metal mobilization: effects of drying,” Journal of Environmental Quality, vol. 36, no. 4, pp. 1187–1193, 2007.
[77]  J. O. Miller, A. D. Karathanasis, and C. J. Matocha, “In situ generated colloid transport of Cu and Zn in reclaimed mine soil profiles associated with biosolids application,” Applied and Environmental Soil Science, vol. 2011, Article ID 762173, 9 pages, 2011.
[78]  M. A. Al-Wabel, D. M. Heil, D. G. Westfall, and K. A. Barbarick, “Solution chemistry influence on metal mobility in biosolids-amended soils,” Journal of Environmental Quality, vol. 31, no. 4, pp. 1157–1165, 2002.
[79]  F. Cabrera, R. López, A. Martinez-Bordiú, E. De Dupuy Lome, and J. M. Murillo, “Land treatment of olive oil mill wastewater,” International Biodeterioration and Biodegradation, vol. 38, no. 3-4, pp. 215–225, 1996.
[80]  F. A. El-Gohary, M. I. Badawy, M. A. El-Khateeb, and A. S. El-Kalliny, “Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment,” Journal of Hazardous Materials, vol. 162, no. 2-3, pp. 1536–1541, 2009.
[81]  M. Stoller, “On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction,” Desalination, vol. 240, no. 1–3, pp. 209–217, 2009.
[82]  C. I. Piperidou, C. I. Chaidou, C. D. Stalikas, K. Soulti, G. A. Pilidis, and C. Balis, “Bioremediation of olive oil mill wastewater: chemical alterations induced by Azotobacter vineladii,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1941–1948, 2000.
[83]  A. Nastri, N. A. Ramieri, R. Abdayem, R. Piccaglia, C. Marzadori, and C. Ciavatta, “Olive pulp and its effluents suitability for soil amendment,” Journal of Hazardous Materials, vol. 138, no. 2, pp. 211–217, 2006.
[84]  A. A. Zorpas and V. J. Inglezakis, “Integrated applied methodology for the treatment of heavy polluted waste waters from olive oil industries,” Applied and Environmental Soil Science, vol. 2011, Article ID 537814, 14 pages, 2011.
[85]  S. A. Pavan-Fernandes, W. Bettiol, and C. Clementi-Cerri, “Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity,” Applied Soil Ecology, vol. 30, no. 1, pp. 65–77, 2005.
[86]  M. Lytle, F. W. Lytle, N. Yang et al., “Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification,” Environmental Science and Technology, vol. 32, no. 20, pp. 3087–3093, 1998.
[87]  A. J. M. Baker and P. L. Walker, “Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity,” Chemical Specialization and Bioavailability, vol. 1, pp. 7–17, 1989.
[88]  D. C. Adriano, Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability, and Risk of Metals, Springer, New York, NY, USA, 2001.
[89]  A. Kabata-Pendias and H. Pendias, Trace Element in Soils and Plants, CRC Press LLC, Boca Raton, Fla, USA, 2001.
[90]  D. J. Walker, R. Clemente, A. Roig, and M. P. Bernal, “The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils,” Environmental Pollution, vol. 122, no. 2, pp. 303–312, 2003.
[91]  R. Clemente, á. Escolar, and M. P. Bernal, “Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials,” Bioresource Technology, vol. 97, no. 15, pp. 1894–1901, 2006.
[92]  E. J. M. Temminghoff, S. E. A. T. M. van der Zee, and F. A. M. de Haan, “Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter,” Environmental Science and Technology, vol. 31, no. 4, pp. 1109–1115, 1997.
[93]  National Research Council, Nutrient Requirements of Domestic Animals, National Academy of Science, National Academy Press, Washington, DC, USA, 7th edition, 1984.
[94]  I. González, V. Muena, M. Cisternas, and A. Neaman, “Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví, Chile central,” Revista Chilena de Historia Natural, vol. 81, no. 2, pp. 279–291, 2008.
[95]  A. Anic, L. F. Hinojosa, J. Díaz-Forester et al., “Influence of soil chemical variables and altitude on the distribution of high-alpine plants: the case of the Andes of central Chile,” Arctic, Antarctic, and Alpine Research, vol. 42, no. 2, pp. 152–163, 2010.
[96]  A. Fahn and D. F. Cutler, Xerophytes, Gebruder Borntraeger, Berlin, Germany, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133