全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Surface Biosolids Application on Infiltration

DOI: 10.1155/2012/642791

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biosolids from waste water treatment facilities applied to soils not only add plant nutrients, but also increase infiltration and decrease runoff and erosion. Wet biosolids from New York, NY, were surface applied at 0 to 90?Mg ha?1 dry weight to soils near El Paso, Tex. Simulated rainfall intensities of 16.4?cm hr?1 for 30 minutes applied to 0.5?m2 soil plots yielded initial infiltration rates of ~16?cm hr?1 for all plots. Biosolids applications extended the duration of the initially high infiltration rates. After 30 minutes, infiltration rates for bare soil were 3?cm hr?1 without and 10?cm hr?1 with 90?Mg biosolids ha?1. Applied biosolids, plant litter, surface gravel, and plant base contributed surface cover, which absorbed raindrop energy and reduced erosion. Biosolids increased cumulative infiltration on the vegetated, wet soils more than for the dry or bare soils. Biosolids increased cumulative infiltration from 2 to 6?cm on a bare gravelly soil and from 9.3 to 10.6?cm on a vegetated soil. 1. Introduction Throughout history, human waste from raw to highly treated waste has been applied to soils by various methods. In the United States, Congress passed the Federal Water Pollution Control Act in 1948, which governed the release of waters and solids into the environment. This act codified raw sewage treatment in publicly owned treatment works (POTWs), where water is removed and residual solids yield sewage sludge. Industrial waste streams are separated from domestic waste to produce much cleaner wastewater solid residuals. The current term for wastewater solid residuals is “biosolids”, which is a term coined by the Water Environment Federation. While biosolids have positive nutrient and hydrologic properties, biosolids were often considered a waste product to be discarded. One method of discarding biosolids was by ocean dumping. The Ocean Dumping Ban Act of 1988 as the name implies, forbid biosolids disposal in the ocean and increased biosolids competition for landfill disposal. Changing the name from “sewage sludge” to the more benign term “biosolids” eased the way for beneficial land applications of biosolids. Biosolids are composed of water, organic matter, and inorganic matter. Water accounts for 60% to 80% of the mass in dewatered biosolids. The dry solids of anaerobically digested biosolids are about 60% organic matter [1]. The biosolids organic fraction is composed of relatively stable organic compounds that resist oxidation in the anaerobic digestion process. The organic matter in biosolids is a source of slow release nitrogen from the

References

[1]  USEPA, “Environmental regulations and technology. Use and disposal of municipal wastewater sludge,” Tech. Rep. WH-595. EPA 625/10-84-003, 1989.
[2]  R. Jensen, “Research encourages biosolids reuse,” Environmental Protection, vol. 4, no. 12, pp. 14–18, 1993.
[3]  L. W. Daniels and K. C. Haering, “Use of sewage sludge for land reclamation in the central Appalachians,” in Sewage sludge: Land Utilization and the Environment, C. E. Clapp, et al., Ed., pp. 105–121, SSSA Misc. Publisher, ASA-CSSA-SSSA, Madison, Wis, USA, 1994.
[4]  V. F. Meyer, E. F. Redente, K. A. Barbarick, R. B. Brobst, M. W. Paschke, and A. L. Miller, “Plant and soil responses to biosolids application following forest fire,” Journal of Environmental Quality, vol. 33, no. 3, pp. 873–881, 2004.
[5]  I. Walter, G. Cuevas, S. Garcia, and F. Martinez, “Biosolids effect on soil and native plant production in a degraded semiarid ecosystem in central Spain,” Water Management Resolution, vol. 18, pp. 259–263, 2000.
[6]  G. Ojeda, J. M. Alcaniz, and O. Ortiz, “Runoff and losses by erosion in soils amended with sewage sludge,” Land Degradation and Development, vol. 14, no. 6, pp. 563–573, 2003.
[7]  R. L. Harris-Pierce, E. F. Redente, and K. A. Barbarick, “Sewage sludge application effects on runoff water quality in a semiarid grassland,” Journal of Environmental Quality, vol. 24, no. 1, pp. 112–115, 1995.
[8]  R. Aguilar and S.R. Loftin, “Sewage sludge application in semiarid grasslands: effects on runoff and surface water quality,” in Proceedings 36th Annual New Mexico Water Conference, pp. 101–111, New Mexico Water Resources Research Institute, Las Cruces, NM, USA, 1992.
[9]  R. Aguilar and S. R. Loftin, “Sewage sludge application in semiarid grasslands: effects on vegetation and water quality,” Tech. Rep., New Mexico Water Resources Research Institute, Las Cruces, NM, USA, 1994.
[10]  R. E. Horton, “An approach toward a physical interpretation of infiltration-capacity,” Soil Science Society of America Proceedings, vol. 5, pp. 399–417, 1940.
[11]  D. Hillel, Environmental Soil Physics, Academic Press, London, UK, 1998.
[12]  W. H. Green and G. A. Ampt, “Studies in soil physics: I. The flow of air and water through soils,” The Journal of Agricultural Science, vol. 4, pp. 1–24, 1911.
[13]  C. A. Moffet, R. E. Zartman, D. B. Wester, and R. E. Sosebee, “Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands,” Journal of Environmental Quality, vol. 34, no. 1, pp. 299–311, 2005.
[14]  C. M. Rostagno and R. E. Sosebee, “Biosolids application in the chihuahuan desert: effects on runoff water quality,” Journal of Environmental Quality, vol. 30, no. 1, pp. 160–170, 2001.
[15]  C. M. Rostagno and R. E. Sosebee, “Surface application of biosolids in the Chihuahuan Desert: effects on soil physical properties,” Arid Land Research and Management, vol. 15, no. 3, pp. 233–244, 2001.
[16]  D. B. Wester, R. E. Sosebee, R. E. Zartman et al., “Biosolids effects in Chihuahuan Desert rangelands: a ten-year study,” Applied and Environmental Soil Science, Article ID 717863, p. 13, 2011.
[17]  S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, pp. 591–611, 1965.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133