Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD) undergoes proteins degradation but limited NH3 volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3 volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47?h of wind tunnel monitoring, the % of total available nitrogen (TAN or and NH3) volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3 as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application. 1. Introduction In-storage psychrophilic anaerobic digestion (ISPAD) occurs in manure storage tanks with an air-tight cover when its anaerobic microbial community acclimates to ambient conditions [1]. Developed for livestock operations in temperate climatic zones, ISPAD can release 65% of the manure’s potential methane while lowering volatile solids by 24% [1]. As opposed to mesophilic, psychrophilic anaerobic digestion limits biogas ammonia (NH3) levels, despite the breakdown of proteins [2, 3]. However, when land spread, the treated effluent may lose to the atmosphere the conserved total available nitrogen (TAN or and NH3), resulting in a net loss of nitrogen lowering its fertilizer value. Following land spreading, the volatilization of NH3-N
References
[1]
S. M. King, S. Barrington, and S. R. Guiot, “In-storage psychrophilic anaerobic digestion: acclimation of the microbial community,” submitted to Biomass and Bioenergy.
[2]
S. M. King, S. Barrington, and S. R. Guiot, “In-storage psychrophilic-anaerobic-digestion of swine manure: protein degradation and interactions,” submitted to Biomass and Bioenergy.
[3]
D. P. B. T. B. Strik, A. M. Domnanovich, and P. Holubar, “A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage,” Process Biochemistry, vol. 41, no. 6, pp. 1235–1238, 2006.
[4]
J. S. Paschold, B. J. Wienhold, D. L. McCallister, and R. B. Ferguson, “Crop nitrogen and phosphorus utilization following application of slurry from swine fed traditional or low phytate corn diets,” Agronomy Journal, vol. 100, no. 4, pp. 997–1004, 2008.
[5]
P. Rochette, M. H. Chantigny, D. A. Angers, N. Bertrand, and D. C?té, “Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues,” Canadian Journal of Soil Science, vol. 81, no. 4, pp. 515–523, 2001.
[6]
R. Gordon, R. Jamieson, V. Rodd, G. Patterson, and T. Harz, “Effects of surface manure application timing on ammonia volatilization,” Canadian Journal of Soil Science, vol. 81, no. 4, pp. 525–533, 2001.
[7]
J. F. M. Huijsmans, J. M. G. Hol, and G. D. Vermeulen, “Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land,” Atmospheric Environment, vol. 37, no. 26, pp. 3669–3680, 2003.
[8]
T. H. Misselbrook, F. A. Nicholson, and B. J. Chambers, “Predicting ammonia losses following the application of livestock manure to land,” Bioresource Technology, vol. 96, no. 2, pp. 159–168, 2005.
[9]
M. S. Mkhabela, R. Gordon, D. Burton, E. Smith, and A. Madani, “The impact of management practices and meteorological conditions on ammonia and nitrous oxide emissions following application of hog slurry to forage grass in Nova Scotia,” Agriculture, Ecosystems & Environment, vol. 130, no. 1-2, pp. 41–49, 2009.
[10]
G. L. Velthof, J. A. Nelemans, O. Oenema, and P. J. Kuikman, “Gaseous nitrogen and carbon losses from pig manure derived from different diets,” Journal of Environmental Quality, vol. 34, no. 2, pp. 698–706, 2005.
[11]
Y. Avnimelech and M. Laher, “Ammonia volatilization from soils: equilibrium considerations,” Soil Science Society of America Journal, vol. 41, no. 6, pp. 1080–1084, 1977.
[12]
S. G. Sommer, S. Génermont, P. Cellier, N. J. Hutchings, J. E. Olesen, and T. Morvan, “Processes controlling ammonia emission from livestock slurry in the field,” European Journal of Agronomy, vol. 19, no. 4, pp. 465–486, 2003.
[13]
S. D. Hafner and J. J. Bisogni, “Modeling of ammonia speciation in anaerobic digesters,” Water Research, vol. 43, no. 17, pp. 4105–4114, 2009.
[14]
S. Husted, L. S. Jensen, and S. S. Jorgensen, “Reducing ammonia loss from cattle slurry by the use of acidifying additives: the role of the buffer system,” Journal of the Science of Food and Agriculture, vol. 57, pp. 335–349, 1991.
[15]
P. L. G. Vlek and J. M. Stumpe, “Effects of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous systems,” Soil Science Society of America Journal, vol. 42, no. 3, pp. 416–421, 1978.
[16]
P. O'Toole, S. J. McGarry, and M. A. Morgan, “Ammonia volatilization from urea-treated pasture and tillage soils: effects of soil properties,” European Journal of Soil Science, vol. 36, pp. 613–620, 1985.
[17]
S. G. Sommer, L. S. Jensen, S. B. Clausen, and H. T. S?gaard, “Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth,” Journal of Agricultural Science, vol. 144, no. 3, pp. 229–235, 2006.
[18]
B. F. Pain, T. H. Misselbrook, C. R. Clarkson, and Y. J. Rees, “Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland,” Biological Wastes, vol. 34, no. 3, pp. 259–267, 1990.
[19]
M. H. Chantigny, P. Rochette, D. A. Angers, D. Massé, and D. C?té, “Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry,” Soil Science Society of America Journal, vol. 68, no. 1, pp. 306–312, 2004.
[20]
M. H. Chantigny, J. D. MacDonald, C. Beaupré et al., “Ammonia volatilization following surface application of raw and treated liquid swine manure,” Nutrient Cycling in Agroecosystems, vol. 85, no. 3, pp. 275–286, 2009.
[21]
K. L. Conn, E. Topp, and G. Lazarovits, “Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure,” Journal of Environmental Quality, vol. 36, no. 2, pp. 440–447, 2007.
[22]
A. D. Moore, D. W. Israel, and R. L. Mikkelsen, “Nitrogen availability of anaerobic swine lagoon sludge: sludge source effects,” Bioresource Technology, vol. 96, no. 3, pp. 323–329, 2005.
[23]
M. Sánchez and J. L. González, “The fertilizer value of pig slurry. I. Values depending on the type of operation,” Bioresource Technology, vol. 96, no. 10, pp. 1117–1123, 2005.
[24]
J. Schr?der, “Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment,” Bioresource Technology, vol. 96, no. 2, pp. 253–261, 2005.
[25]
J. A. Field, J. S. Caldwell, S. Jeyanayagam, R. B. Reneau, W. Kroontje, and E. R. Collins, “Fertilizer recovery from anaerobic digesters,” Transactions of the American Society of Agricultural Engineers, vol. 27, no. 6, pp. 1871–1881, 1984.
[26]
C. E. Marcato, R. Mohtar, J. C. Revel, P. Pouech, M. Hafidi, and M. Guiresse, “Impact of anaerobic digestion on organic matter quality in pig slurry,” International Biodeterioration and Biodegradation, vol. 63, no. 3, pp. 260–266, 2009.
[27]
S. P. Dahlberg, J. A. Lindley, and J. F. Giles, “Effect of anaerobic digestion of nutrient availability from dairy manure,” Transactions of the American Society of Agricultural Engineers, vol. 31, no. 4, pp. 1211–1216, 1988.
[28]
E. R. Loria, J. E. Sawyer, D. W. Barker, J. P. Lundvall, and J. C. Lorimor, “Use of anaerobically digested swine manure as a nitrogen source in corn production,” Agronomy Journal, vol. 99, no. 4, pp. 1119–1129, 2007.
[29]
M. H. Chantigny, D. A. Angers, P. Rochette, G. Bélanger, D. Massé, and D. C?té, “Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure,” Journal of Environmental Quality, vol. 36, no. 6, pp. 1864–1872, 2007.
[30]
APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 2005.
[31]
CEAE, Determination du pH a l'Eau dans les Sols Agricoles, Centre d'expertise en analyse environnemental du Québec. Ministere de l'Agriculture, de l'Alimentation et des Pêcheries du Québec, Ministere du Développement durable, de l'Environnement du Québec, Quebec, Canada, 2003.
[32]
CEAE, Determination de la Matiere Organique par Incineration: Methode de Perte de Feu (PAF), Centre d'expertise en analyse environnemental du Québec. Ministere de l'Agriculture, de l'Alimentation et des Pêcheries du Québec, Ministere du Développement durable, de l'Environnement du Québec, Quebec, Canada, 2003.
[33]
CEAE, Determination des Metaux Extractables dans les Sols Agricoles: Methode par Spectrometrie d'Emission au Plasma d'Argon ou par Spectrometrie d'Absorption Atomique apres Extraction avec la Methode Mehlich III, Centre d'expertise en analyse environnemental du Québec. Ministere de l'Agriculture, de l'Alimentation et des Pêcheries du Québec, Ministere du Développement durable, de l'Environnement du Québec, Quebec, Canada, 2003.
[34]
CRAAQ, Guide de Reference en Fertilisation, Centre de Reference en Agriculture et Agroalimentaire du Quebec, Quebec, Canada, 1st edition, 2003.
[35]
B. H. Sheldrick and C. Wang, “Particle size distribution,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 499–511, Lewis Publishers, Boca Raton, Fla, USA, 1993.
[36]
D. Choinière, S. Barrington, and C. Foulds, “A validated evaluation protocol for odour reducing additives during swine manure spreading,” in International Symposium on air Quality and Waste Management for Agriculture, Broomfield, Colo, USA, 2007, ASABE publication number 701P0907cd.
[37]
D. M. Miles, P. R. Owens, P. A. Moore, and D. E. Rowe, “Instrumentation for evaluating differences in ammonia volatilization from broiler litter and cake,” Journal of Applied Poultry Research, vol. 17, no. 3, pp. 340–347, 2008.
[38]
K. M?ller and W. Stinner, “Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides),” European Journal of Agronomy, vol. 30, no. 1, pp. 1–16, 2009.
[39]
R. Gutser, T. Ebertseder, A. Weber, M. Schraml, and U. Schmidhalter, “Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land,” Journal of Plant Nutrition and Soil Science, vol. 168, no. 4, pp. 439–446, 2005.
[40]
MDDEP, Reglement sur les Exploitations Agricoles c. Q-2,r.11-1, Editeur officiel du Quebec, Quebec, Canada, 2005.