全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Use of Soil Organic and Inorganic Amendments in Heavy Metals Stabilization

DOI: 10.1155/2012/721032

Full-Text   Cite this paper   Add to My Lib

Abstract:

Remediation strategies are capable to mitigate negative effects of heavy metals (HMs) on soils. The distribution of cooper (Cu), zinc (Zn), and chromium (Cr) was evaluated in a contaminated soil after adding biosolid compost (BC) and phosphate fertilizer (PF). A greenhouse assay and sequential extraction procedure were performed to determine the fractionation of HM in contaminated and remediated soil. In BC treatment, among 4 to 6% of Cu was associated with soil humic substances. Without amendments and with fertilizer application, Zn solubility increased by 15.4 and 8.4%, respectively, with experiment time. Although Cr was significantly adsorbed to the inorganic fraction, with compost application there was a transfer to organic fraction. A single amendment application is not suitable for immobilizing all metals of concern, because there are diverse union’s behaviors between HM and soil matrix. As the organic matter and phosphate fertilizer were effective in reducing mobility of Cu, the organic matter was more effective in the immobilization of Cr, and inorganic amendment induced the Zn precipitation, results from this pilot study suggest a combined use of these two amendments for soil remediation strategies. However, liming may be further needed to prevent soil acidification on longer time scales. Also, we propose the use of chemical and biological remediation strategies for potential improvement of effectiveness. 1. Introduction Point source and diffuse contamination of soils by heavy metals (HMs) is an environmental problem worldwide. An important input pathway is anthropogenic activities, such as disposal of industrial and hazardous residues, mining activities, incidental accumulations, industries atmospheric deposition, energy generation, and agricultural chemicals [2, 3]. High proportion of the contamination is retained by soil particles, so that is why this system is considered a vulnerable environment to being contaminated [4]. In addition, there is an increasing interest in HM contamination as a result of a continuous accumulation on top soil, with elevated availability to organisms [5]. Therefore, high concentrations of HM and their potential toxicity may affect soil ecology, agricultural production, and water quality, implicating risks for environment and human health [6]. In Argentine, soil contamination has been mostly recorded in urban and periurban areas. Reference [7] indicated that concentrations of Cd, Cu, Pb, and Zn in urban soils exceeded the international standards referred to the human health, and according to [8], elevated levels

References

[1]  S. P. McGrath and C. H. Cunliffe, “A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Pb, Cr, Co and Mn from soils and sewage sludges,” Journal of the Science of Food and Agriculture, vol. 36, pp. 794–798, 1985.
[2]  A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2000.
[3]  R. Schulin, F. Curchod, M. Mondeshka, A. Daskalova, and A. Keller, “Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria),” Geoderma, vol. 140, no. 1-2, pp. 52–61, 2007.
[4]  D. T. Pinochet, J. A. Aguirre, and E. R. Quiroz, “Estudio de la lixiviación de Cadmio, Mercurio y Plomo en suelos derivados de cenizas volcánicas,” Agro Sur, vol. 30, no. 1, pp. 51–58, 2002.
[5]  D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer, New York, NY, USA, 2nd edition, 2001.
[6]  J. A. Gómez del Río, P. J. Morando, and D. S. Cicerone, “Natural materials for treatment of industrial effluents: Comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments,” Journal of Environmental Management, vol. 71, no. 2, pp. 169–177, 2004.
[7]  R. S. Lavado, M. B. Rodrígue, J. D. Scheiner et al., “Heavy metals in soils of Argentina: comparison between urban and agricultural soils,” Communications in Soil Science and Plant Analysis, vol. 29, no. 11–14, pp. 1913–1917, 1998.
[8]  L. Giuffré, S. Ratto, L. Marbán, J. Schonwald, and R. Romaniuk, “Heavy metals risk in urban agriculture,” Ciencia del Suelo, vol. 23, no. 1, pp. 101–106, 2005.
[9]  K. Flogeac, E. Guillon, and M. Aplincourt, “Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies,” Geoderma, vol. 139, no. 1-2, pp. 180–189, 2007.
[10]  M. B. McBride, Environmental Chemistry of Soils, Oxford University Press, New York, NY, USA, 1994.
[11]  P. Sipos, T. Németh, V. K. Kis, and I. Mohai, “Sorption of copper, zinc and lead on soil mineral phases,” Chemosphere, vol. 73, no. 4, pp. 461–469, 2008.
[12]  A. P. D. Mora, J. J. Ortega-Calvo, F. Cabrera, and E. Madejón, “Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil,” Applied Soil Ecology, vol. 28, no. 2, pp. 125–137, 2005.
[13]  R. Clemente, D. J. Walker, and M. P. Bernal, “Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments,” Environmental Pollution, vol. 138, no. 1, pp. 46–58, 2005.
[14]  M. Mench, J. Vangronsveld, C. Beckx, and A. Ruttens, “Progress in assisted natural remediation of an arsenic contaminated agricultural soil,” Environmental Pollution, vol. 144, no. 1, pp. 51–61, 2006.
[15]  O. P. Shukla, U. N. Rai, and S. Dubey, “Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L,” Bioresource Technology, vol. 100, no. 7, pp. 2198–2203, 2009.
[16]  X. Cao, A. Wahbi, L. Ma, B. Li, and Y. Yang, “Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 555–564, 2009.
[17]  N. Calace, T. Campisi, A. Iacondini, M. Leoni, B. M. Petronio, and M. Pietroletti, “Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation,” Environmental Pollution, vol. 136, no. 3, pp. 485–492, 2005.
[18]  R. Clemente, C. Almela, and M. P. Bernal, “A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste,” Environmental Pollution, vol. 143, no. 3, pp. 397–406, 2006.
[19]  P. Castaldi and P. Melis, “Growth and yield characteristics and heavy metals content on tomatoes in different growing media,” Communications in Soil Science and Plant Analysis, vol. 35, no. 1-2, pp. 85–98, 2004.
[20]  J. Wright, J. L. Conca, and A. F. Slater, “PIMS with apatite II: a field scale demonstration on a lead contaminated soil,” in Stabilisation/Solidification Treatment and Remediation, A. Al-Tabbaa and J. A. Stegemann, Eds., Chapter 4, Taylor and Francis, London, UK, 2005.
[21]  W. Geebelen, D. C. Adriano, D. Van Der Lelie et al., “Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils,” Plant and Soil, vol. 249, no. 1, pp. 217–228, 2003.
[22]  E. Madejón, A. P. De Mora, E. Felipe, P. Burgos, and F. Cabrera, “Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation,” Environmental Pollution, vol. 139, no. 1, pp. 40–52, 2006.
[23]  S. P. McGrath and J. Cegarra, “Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil,” Journal of Soil Science, vol. 43, no. 2, pp. 313–321, 1992.
[24]  A. K. Alva, B. Huang, and S. Paramasivam, “Soil pH affects copper fractionation and phytotoxicity,” Soil Science Society of America Journal, vol. 64, no. 3, pp. 955–962, 2000.
[25]  S. Amir, M. Hafidi, G. Merlina, and J. C. Revel, “Sequential extraction of heavy metals during composting of sewage sludge,” Chemosphere, vol. 59, no. 6, pp. 801–810, 2005.
[26]  S. I. Torri and R. Lavado, “Zinc distribution in soils amended with different kinds of sewage sludge,” Journal of Environmental Management, vol. 88, no. 4, pp. 1571–1579, 2008.
[27]  N. T. Faithfull, Methods in Agricultural Chemicals Analysis: A Practical Handbook, CAB International Publishing, Wallingford, UK, 2004.
[28]  G. Welp and G. W. Brümmer, “Adsorption and solubility of ten metals in soil samples of different composition,” Journal of Plant Nutrition and Soil Science, vol. 162, no. 2, pp. 155–161, 1999.
[29]  P. C. Gomes, M. P. F. Fontes, A. G. Da Silva, E. S. De Mendon?a, and A. R. Netto, “Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils,” Soil Science Society of America Journal, vol. 65, no. 4, pp. 1115–1121, 2001.
[30]  N. A. Ali, M. Ater, G. I. Sunahara, and P. Y. Roubidoux, “Phytotoxicity and bioaccumulation of cooper and chromium using barley (Hordeum vulgar L.) in spiked artificial and natural forest soils,” Ecotoxicology and Environmental Safety, vol. 54, pp. 363–374, 2004.
[31]  A. Lagomarsino, M. Mench, R. Marabottini et al., “Copper distribution and hydrolase activities in a contaminated soil amended with dolomitic limestone and compost,” Ecotoxicology and Environmental Safety, vol. 74, no. 7, pp. 2013–2019, 2011.
[32]  R. O'Dell, W. Silk, P. Green, and V. Claassen, “Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.),” Environmental Pollution, vol. 148, no. 1, pp. 115–124, 2007.
[33]  S. Dragovi?, N. Mihailovi?, and B. Gaji?, “Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources,” Chemosphere, vol. 72, no. 3, pp. 491–495, 2008.
[34]  P. Adamo, M. Zampella, L. Gianfreda, G. Renella, F. A. Rutigliano, and F. Terribile, “Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties,” Environmental Pollution, vol. 144, no. 1, pp. 308–316, 2006.
[35]  F. Panfili, A. Manceau, G. Sarret et al., “The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis,” Geochimica et Cosmochimica Acta, vol. 69, no. 9, pp. 2265–2284, 2005.
[36]  N. T. Basta and J. J. Sloan, “Application of alkaline biosolids to acid soils: changes in solubility and bioavailability of heavy metals,” Journal of Environmental Quality, vol. 28, pp. 633–638, 1999.
[37]  S. Torri and R. Lavado, “Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 1459–1465, 2009.
[38]  M. P. F. Fontes and P. C. Gomes, “Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils,” Applied Geochemistry, vol. 18, no. 6, pp. 795–804, 2003.
[39]  J. Kumpiene, I. Castillo Montesinos, A. Lagerkvist, and C. Maurice, “Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil,” Chemosphere, vol. 67, no. 2, pp. 410–417, 2007.
[40]  A. Fuentes, M. Lloréns, J. Sáez, Ma. I. Aguilar, J. F. Ortu?o, and V. F. Meseguer, “Phytotoxicity and heavy metals speciation of stabilised sewage sludges,” Journal of Hazardous Materials, vol. 108, no. 3, pp. 161–169, 2004.
[41]  M. Pueyo, J. Mateu, A. Rigol, M. Vidal, J. F. López-Sánchez, and G. Rauret, “Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils,” Environmental Pollution, vol. 152, no. 2, pp. 330–341, 2008.
[42]  S. Smith, P. J. Peterson, and K. H. M. Kwan, “Chromium accumulation, transport and toxicity in plants,” Toxicological and Environmental Chemistry, vol. 24, pp. 241–251, 1989.
[43]  E. F. Covelo, F. A. Vega, and M. L. Andrade, “Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils. II. Soil ranking and influence of soil characteristics,” Journal of Hazardous Materials, vol. 147, no. 3, pp. 862–870, 2007.
[44]  N. S. Bolan and V. P. Duraisamy, “Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies,” Australian Journal of Soil Research, vol. 41, no. 3, pp. 533–555, 2003.
[45]  L. Q. Ma and G. N. Rao, “Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils,” Journal of Environmental Quality, vol. 26, no. 1, pp. 259–264, 1997.
[46]  A. L. Lafuente, C. González, J. R. Quintana, A. Vázquez, and A. Romero, “Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region,” Geoderma, vol. 145, no. 3-4, pp. 238–244, 2008.
[47]  A. Branzini, M. S. Zubillaga, and M. M. Zubillaga, “Microbial response to the application of amendments in a contaminated soil with trace elements,” American Journal of Environmental Sciences, vol. 5, no. 1, pp. 94–98, 2009.
[48]  P. Tume, J. Bech, L. Longan, L. Tume, F. Reverter, and B. Sepulveda, “Trace elements in natural surface soils in Sant Climent (Catalonia, Spain),” Ecological Engineering, vol. 27, no. 2, pp. 145–152, 2006.
[49]  M. De Nobili, G. Cercignani, L. Leita, and P. Sequi, “Evaluation of organic matter stabilization in sewage sludge,” Communications in Soil & Plant Analysis, vol. 17, no. 10, pp. 1109–1119, 1986.
[50]  M. S. Zubillaga and R. S. Lavado, “Long term phosphate fertilization and trace element contents in a Typic Argiudoll of the Rolling Pampas,” Ciencia del Suelo, vol. 20, no. 2, pp. 110–113, 2002.
[51]  B. Wang, Z. Xie, J. Chen, J. Jiang, and Q. Su, “Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil,” Journal of Environmental Sciences, vol. 20, no. 9, pp. 1109–1117, 2008.
[52]  I. Sastre-Conde, J. G. Cabezas, A. Guerrero, M. á. Vicente, and M. D. C. Lobo, “Evaluation of the soil biological activity in a remediation soil assay using organic amendments and vegetal cover,” Science of the Total Environment, vol. 378, no. 1-2, pp. 205–208, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133