Vanadium (V) is a naturally occurring trace element, but total concentrations in soils and sediments are also dependent on the parent material and might be influenced by anthropogenic activities (e.g., steel industry). Despite the fact that threshold values for V in soils and/or sediments exist in various European countries, in Belgium, V is not taken into account when the environmental quality of soils and sediments has to be evaluated, despite the existence of several (diffuse) sources for V. In the first part of the study, the occurrence of V alluvial soils in Belgium was compared with V concentrations in alluvial soils (floodplain soils) across Europe. By analysis of both the Belgian and European data, the relationship between physicochemical soil characteristics and total V concentrations was quantified and some areas polluted with V were detected. A regression equation, in which V concentrations in alluvial soils were expressed as a function of major element composition, was proposed for the Belgian and European data. Additionally, single extractions with CaCl2 (0.01?mol?L?1) and ammonium-EDTA (0.05?mol?L?1) were used to estimate short- and long-term mobility of V in the alluvial soils. 1. Introduction 1.1. Vanadium in Soils and Sediments Vanadium (V) naturally occurs as trace element in soils and sediments. The average concentration in soil is estimated to be around 150?μg?g?1 [1] and 90?μg?g?1 [2]. The concentration of V in soils and sediments also depends on the parent material and the occurrence of V-containing ore minerals in the subsoil [3]. Vanadium concentrations in igneous rocks are higher than in acidic and in siliceous rocks, whereas the V content of metamorphic and sedimentary rocks is intermediate between the content of basic and acidic igneous rocks [3]. In soils, V is mainly associated with Fe(hydr)oxides, clay minerals, and organic matter and it can also occur as discrete mineral phases such as carnotite (K2(UO2)2(VO4)2·3H2O) and vanadinite (Pb5(VO4)3Cl) [2, 4, 5]. As an element of group VB and with atomic number 23 in the periodic table, it can acquire several oxidation states (+III, +IV, +V) [2, 6]. Beside its natural occurrence in soils and sediments, several anthropogenic sources can cause an enrichment or even pollution of soils and sediments with V. The main anthropogenic sources of V are (1) the use of V as a catalyst in the metal-, cement-, electronics, and textile industry; (2) the production of certain metals such as iron and uranium, with V as a secondary product [2], vanadium concentrations up to 738?mg/kg [7] and
References
[1]
N. Panichev, K. Mandiwana, D. Moema, R. Molatlhegi, and P. Ngobeni, “Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine,” Journal of Hazardous Materials, vol. 137, no. 2, pp. 649–653, 2006.
[2]
R. D. Schuiling, R. J. van Enk, and H. L. T. en Bergsma, “Natuurlijk voorkomen, mobiliteit en industrieel gebruik van “exoten” voorkomend in de Nederlandse bodem (Br, I, Ba, Sb, V, Sn, Co, Mo, Se),” 2003, http://www.geochem.nl/.
[3]
R. Edwards, N. W. Lepp, and K. C. Jones, “Other less abundant elements of potential significance,” in Heavy Metals in Soils, B. J. Alloway, Ed., pp. 307–352, Blackie Academic/Chapman and Hall, London, UK, 2nd edition, 1995.
[4]
W. De Vos, J. Ebbing, R. Hindel, J. Schalich, R. Swennen, and I. Van Keer, “Geochemical mapping based on overbank sediments in the heavily industrialised border area of Belgium, Germany and the Netherlands,” Journal of Geochemical Exploration, vol. 56, no. 2, pp. 91–104, 1996.
[5]
J. Po?edniok and F. Buhl, “Speciation of vanadium in soil,” Talanta, vol. 59, no. 1, pp. 1–8, 2003.
[6]
D. G. Barceloux, “Vanadium,” Clinical Toxicology, vol. 37, no. 2, pp. 265–278, 1999.
[7]
Y. Teng, X. Jiao, J. Wang, W. Xu, and J. Yang, “Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province, China,” Chinese Journal of Geochemistry, vol. 28, no. 1, pp. 105–111, 2009.
[8]
World Health organization (WHO), Vanadium Pentoxide and Other Inorganic Vanadium Compounds, WHO, Genève, Switzerland, 2001.
[9]
B. J. Alloway, Heavy Metals in Soils, Chapman and Hall, London, UK, 1995.
[10]
P. Lodewijks, C. Polders, K. Briffaerts, and H. Van Rompaey, “Evaluatie emissiereductiepotentieel voor diverse polluentemissies naar de lucht van de chemische sector, deel II, Eindrapport,” Evaluation of the potential reduction of industrial emissions from the chemical sector, Part 2, Final report II. Study ordered by Aminal, Environmental Policy section, 2004/IMS/R/186, August 2004.
[11]
J. R. Benemann, C. E. McKenna, R. F. Lie, T. G. Traylor, and M. D. Kamen, “The vanadium effect in nitrogen fixation by azotobacter,” Biochimica et Biophysica Acta, vol. 264, no. 1, pp. 25–38, 1972.
[12]
A. Olness, R. Gesch, F. Forcella, D. Archer, and J. Rinke, “Importance of vanadium and nutrient ionic ratios on the development of hydroponically grown cuphea,” Industrial Crops and Products, vol. 21, no. 2, pp. 165–171, 2005.
[13]
M. Kasai, J. Yamazaki, M. Kikuchi, M. Iwaya, and S. Sawada, “Concentration of vanadium in soil water and its effect on growth and metabolism of rye and wheat plants,” Communications in Soil Science and Plant Analysis, vol. 30, no. 7-8, pp. 971–982, 1999.
[14]
K. L. Mandiwana and N. Panichev, “The leaching of vanadium(V) in soil due to the presence of atmospheric carbon dioxide and ammonia,” Journal of Hazardous Materials, vol. 170, no. 2-3, pp. 1260–1263, 2009.
[15]
W. De Vos and T. Tarvainen, Eds., Geochemical Atlas of Europe Part 2: Interpretation of Geochemical Mops, Additional Tables, Figures, Maps and Related Publications, EuroGeosurveys & Foregs, Espoo, Finland, 2006.
[16]
C. M. E. McCrindle, E. Mokantla, and N. Duncan, “Peracute vanadium toxicity in cattle grazing near a vanadium mine,” Journal of Environmental Monitoring, vol. 3, no. 6, pp. 580–582, 2001.
[17]
B. Mukherjee, B. Patra, S. Mahapatra, P. Banerjee, A. Tiwari, and M. Chatterjee, “Vanadium—an element of atypical biological significance,” Toxicology Letters, vol. 150, no. 2, pp. 135–143, 2004.
[18]
A. G. Darnley, A. Bj?rklund, B. B?lviken et al., A Global geochemical database for environmental and resource management. Final report of IGCP Project 259, Earth Sciences 19, UNESCO Publishing, Paris, France, 1995.
[19]
R. T. Ottesen, J. Bogen, B. B?lviken, and T. Volden, “Overbank sediment: a representative sample medium for regional geochemical mapping,” Journal of Geochemical Exploration, vol. 32, no. 1–3, pp. 257–277, 1989.
[20]
J. Ridgway, D. M. A. Flight, B. Martiny, A. Gomez-Caballero, C. Macias-Romo, and K. Greally, “Overbank sediments from central Mexico: An evaluation of their use in regional geochemical mapping and in studies of contamination from modern and historical mining,” Applied Geochemistry, vol. 10, no. 1, pp. 97–109, 1995.
[21]
J. Provoost, C. Cornelis, and F. Swartjes, “Comparison of soil clean-up standards for trace elements between countries: why do they differ?” Journal of Soils and Sediments, vol. 6, no. 3, pp. 173–181, 2006.
[22]
C. Carlon, Ed., Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization, European Commission, Joint Research Centre, Ispra, Italy, 2007.
[23]
D. J. Spurgeon, P. Rowland, G. Ainsworth, P. Rothery, S. Long, and H. I. J. Black, “Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils,” Environmental Pollution, vol. 153, no. 2, pp. 273–283, 2008.
[24]
R. Swennen, I. VanKeer, and W. DeVos, “Heavy metal contamination in overbank sediments of the Geul River (east Belgium): its relation to former Pb-Zn mining activities,” Environmental Geology, vol. 24, no. 1, pp. 12–21, 1994.
[25]
H. Leenaers, “The transport of heavy metals during flood events in the polluted River Geul (The Netherlands),” Hydrological Processes, vol. 3, no. 4, pp. 325–338, 1989.
[26]
B. B?lviken, J. Bogen, W. De Vos et al., “Final report of the Working Group on Regional Geochemical Mapping 1986-1993. Forum of European Geological Surveys (FORGES),” Geological Survey of Norway (NGU) Open File Report 93.092, 1993.
[27]
B. B?lviken, J. Bogen, A. Demetriades et al., “Regional geochemical mapping of Western Europe towards the year 2000,” Journal of Geochemical Exploration, vol. 56, no. 2, pp. 141–166, 1996.
[28]
R. Salminen, M. J. Batista, M. Bidovec, and A. Demetriades, Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps, EuroGeosurveys & Foregs, Espoo, Finland, 2005.
[29]
R. Salminen, T. Tarvainen, A. Demetriades et al., FOREGS geochemical mapping field manual, Geological Survey of Finland, Guide 47, 1998.
[30]
D. W. Nelson and L. E. Sommers, “Total carbon, organic carbon and organic matter,” in Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, pp. 516–593, American Society of Agronomy, Madison, Wis, USA, 2nd edition, 1982.
[31]
P. Quevauviller, “Operationally defined extraction procedures for soil and sediment analysis I. Standardization,” TrAC, vol. 17, no. 5, pp. 289–298, 1998.
[32]
H. Sandstr?m, S. Reeder, A. Bartha et al., “Sample preparation and analysis,” in Geochemical Atlas of Europe. Part 1—Background Information, Methodology, and Maps, R. Salminen, et al., Ed., Geological Survey of Finland, Espoo, Finland, 1998.
[33]
L. De Temmerman, L. Vanongeval, W. Boon, M. Hoenig, and M. Geypens, “Heavy metal content of arable soils in Northern Belgium,” Water, Air, and Soil Pollution, vol. 148, no. 1–4, pp. 61–76, 2003.
[34]
R. Webster, “Regression and functional relations,” European Journal of Soil Science, vol. 48, no. 3, pp. 557–566, 1997.
[35]
R. Webster, “Statistics to support soil research and their presentation,” European Journal of Soil Science, vol. 52, no. 2, pp. 331–340, 2001.
[36]
Z. Peh and S. Miko, “Geochemical comparison of stream and overbank sediments: a case study from the ?umberak region, Croatia,” Geologia Croatica, vol. 54, no. 1, pp. 119–130, 2001.
[37]
G. M. Ivanov and V. K. Kashin, “Vanadium in the landscapes of western Transbaikalia,” Geochemistry International, vol. 48, no. 3, pp. 295–299, 2010.
[38]
A. J. Wigginton and D. J. Price, “Analysis of Metals in Water, Stream Sediments, and Floodplain Soils Collected May 23-25, 2006 from the Bayou Creek System,” DRAFT REPORT, February 2007.
[39]
W. M. Mayes, A. P. Jarvis, I. T. Burke et al., “Dispersal and attenuation of trace contaminants downstream of the ajka bauxite residue (Red Mud) depository failure, Hungary,” Environmental Science and Technology, vol. 45, no. 12, pp. 5147–5155, 2011.
[40]
L. R. Lado, T. Hengl, and H. I. Reuter, “Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database,” Geoderma, vol. 148, no. 2, pp. 189–199, 2008.
[41]
L. Horckmans, R. Swennen, J. Deckers, and R. Maquil, “Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxembourg,” Catena, vol. 59, no. 3, pp. 279–304, 2005.
[42]
P. Tume, J. Bech, L. Tume et al., “Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain),” Journal of Geochemical Exploration, vol. 96, no. 2-3, pp. 94–105, 2008.
[43]
D. J. Huisman, F. J. H. Vermeulen, J. Baker, A. Veldkamp, S. B. Kroonenberg, and G. T. Klaver, “A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands,” Journal of Geochemical Exploration, vol. 59, no. 3, pp. 163–174, 1997.
[44]
M. Aide, “Geochemical assessment of iron and vanadium relationships in oxic soil environments,” Soil and Sediment Contamination, vol. 14, no. 5, pp. 403–416, 2005.
[45]
S. R. Oliva and A. J. F. Espinosa, “Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources,” Microchemical Journal, vol. 86, no. 1, pp. 131–139, 2007.
[46]
T. Sterckeman, F. Douay, D. Baize, H. Fourrier, N. Proix, and C. Schvartz, “Trace elements in soils developed in sedimentary materials from Northern France,” Geoderma, vol. 136, no. 3-4, pp. 912–929, 2006.
[47]
A. Naeem, P. Westerhoff, and S. Mustafa, “Vanadium removal by metal (hydr)oxide adsorbents,” Water Research, vol. 41, no. 7, pp. 1596–1602, 2007.
[48]
B. Wehrli and W. Stumm, “Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation,” Geochimica et Cosmochimica Acta, vol. 53, no. 1, pp. 69–77, 1989.
[49]
VLAREBO, “Vlaams reglement betreffende de bodemsanering. Decree on Soil Remediation and Soil protection,” ratified by the Flemish Government on October 2006.
[50]
C. Carlon, M. Dalla Valle, and A. Marcomini, “Regression models to predict water-soil heavy metals partition coefficients in risk assessment studies,” Environmental Pollution, vol. 127, no. 1, pp. 109–115, 2004.
[51]
D. G. Schulze, “Separation and concentration of iron-containing phases,” in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, Eds., pp. 63–81, Reidel, Dordrecht, The Netherlands, 1988.
[52]
S. Covelli and G. Fontolan, “Application of a normalization procedure in determining regional geochemical baselines,” Environmental Geology, vol. 30, no. 1-2, pp. 34–45, 1997.
[53]
K. C. Schiff and S. B. Weisberg, “Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments,” Marine Environmental Research, vol. 48, no. 2, pp. 161–176, 1999.
[54]
V. J. G. Houba, T. M. Lexmond, I. Novozamsky, and J. J. Van Der Lee, “State of the art and future developments in soil analysis for bioavailability assessment,” Science of the Total Environment, vol. 178, pp. 21–28, 1996.
[55]
M. McBride, S. Sauvé, and W. Hendershot, “Solubility control of Cu, Zn, Cd and Pb in contaminated soils,” European Journal of Soil Science, vol. 48, no. 2, pp. 337–346, 1997.
[56]
S. Sauvé, W. Hendershot, and H. E. Allen, “Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter,” Environmental Science and Technology, vol. 34, no. 7, pp. 1125–1131, 2000.
[57]
K. L. Mandiwana, N. Panichev, and R. Molatlhegi, “The leaching of V(V) with in the speciation analysis of soil,” Analytica Chimica Acta, vol. 545, no. 2, pp. 239–243, 2005.
[58]
W. P. Miller, D. C. Martens, L. W. Zelazny, and E. T. Kornegay, “Forms of solid phase copper in copper-enriched swine manure,” Journal of Environmental Quality, vol. 15, no. 1, pp. 69–72, 1986.
[59]
O. K. Borggaard, “Selective extraction of amorphous iron oxides by EDTA from a Danish sandy loam,” Journal of Soil Science, vol. 30, pp. 727–734, 1979.
[60]
B. Nowack and L. Sigg, “Dissolution of Fe(III)(hydr) oxides by metal-EDTA complexes,” Geochimica et Cosmochimica Acta, vol. 61, no. 5, pp. 951–963, 1997.
[61]
H. E. G?bler, K. Glüh, A. Bahr, and J. Utermann, “Quantification of vanadium adsorption by German soils,” Journal of Geochemical Exploration, vol. 103, no. 1, pp. 37–44, 2009.