全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Digital Mapping of Soil Drainage Classes Using Multitemporal RADARSAT-1 and ASTER Images and Soil Survey Data

DOI: 10.1155/2012/430347

Full-Text   Cite this paper   Add to My Lib

Abstract:

Discriminant analysis classification (DAC) and decision tree classifiers (DTC) were used for digital mapping of soil drainage in the Bras-d’Henri watershed (QC, Canada) using earth observation data (RADARSAT-1 and ASTER) and soil survey dataset. Firstly, a forward stepwise selection was applied to each land use type identified by ASTER image in order to derive an optimal subset of soil drainage class predictors. The classification models were then applied to these subsets for each land use and merged to obtain a digital soil drainage map for the whole watershed. The DTC method provided better classification accuracies (29 to 92%) than the DAC method (33 to 79%) according to the land use type. A similarity measure ( ) was used to compare the best digital soil drainage map (DTC) to the conventional soil drainage map. Medium to high similarities ( ) were observed for 83% (187?km2) of the study area while 3% of the study area showed very good agreement ( ). Few soil polygons showed very weak similarities ( ). This study demonstrates the efficiency of combining radar and optical remote sensing data with a representative soil dataset for producing digital maps of soil drainage. 1. Introduction Much of Canada’s agricultural land has been mapped at reconnaissance (scale 1?:?125?000) or semidetailed scales (scale 1?:?50 000 or 1?:?63 000). Although these maps are useful for watershed management purposes, the soil information contained within them is often obsolete is typically of poor uniformity, and, nearly, always lacks the precision required to support land use decision-making or modelling efforts. The production of maps at more detailed scales, as well as the inclusion of additional soil drainage information, is thus required for map users to effectively inform land use and management decisions [1]. Mapping soil drainage classes with accurate and objective information is important for both crop productivity and hydrological modelling. Conventional soil mapping methods are laborious and expensive, requiring intensive soil sampling over large areas. Soil surveyors usually identify typological landscape units by their characteristics (i.e., form, geomorphology, vegetation, geology, etc.) and then select representative locations for describing and sampling soil profiles. The number of profiles needed to represent a landscape unit depends on the prospective scale and soil variability. In addition, conventional soil maps are generally created using a polygon-based approach, where different soils on the landscape are represented as polygons with discrete borders.

References

[1]  L. J. Bartelli, “Interpreting soils data,” in Planning the Uses and Management of Land, M. T. Beatty, G. W. Petersen, and L. D. Swindale, Eds., pp. 91–116, American Society of Agronomy, Madison, Wis, USA, 1979.
[2]  T. Hengl, A Practical Guide to Geostatistical Mapping, University of Amsterdam, 2nd edition, 2009.
[3]  A. B. McBratney, M. L. Mendon?a Santos, and B. Minasny, “On digital soil mapping,” Geoderma, vol. 117, no. 1-2, pp. 3–52, 2003.
[4]  P. E. Gessler, I. D. Moore, N. J. McKenzie, and P. J. Ryan, “Soil-landscape modelling and spatial prediction of soil attributes,” International Journal of Geographical Information Systems, vol. 9, no. 4, pp. 421–432, 1995.
[5]  P. Campling, A. Gobin, and J. Feyen, “Logistic modeling to spatially predict the probability of soil drainage classes,” Soil Science Society of America Journal, vol. 66, no. 4, pp. 1390–1401, 2002.
[6]  F. Bonn and R. Escadafal, “Précis de télédétection,” in Applications Thématiques, F. Bonn, Ed., vol. 2, pp. 91–135, Presses de l’Université du Québec/AUPELF, Quebec, Canada, 1996.
[7]  N. M. Mattikalli, “Soil color modeling for the visible and near-infrared bands of landsat sensors using laboratory spectral measurements,” Remote Sensing of Environment, vol. 59, no. 1, pp. 14–28, 1997.
[8]  D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 722–727, 2002.
[9]  A. R. Huete and R. Escadafal, “Assessment of biophysical soil properties through spectral decomposition techniques,” Remote Sensing of Environment, vol. 35, no. 2-3, pp. 149–159, 1991.
[10]  J. Liu, J. R. Miller, D. Haboudane, E. Pattey, and M. C. Nolin, “Spatial patterns in seasonal CASI image data products and potential application for management zone delineation for precision agriculture,” in Proceedings of the 25th Canadian Remote Sensing Conference, Quebec, Canada, October 2003.
[11]  F. T. Ulaby, P. C. Dubois, and J. Van Zyl, “Radar mapping of surface soil moisture,” Journal of Hydrology, vol. 184, no. 1-2, pp. 57–84, 1996.
[12]  H. McNairn and B. Brisco, “The application of C-band polarimetric SAR for agriculture: a review,” Canadian Journal of Remote Sensing, vol. 30, no. 3, pp. 525–542, 2004.
[13]  J. J. van der Sanden, “Anticipated applications potential of RADARSAT-2 data,” Canadian Journal of Remote Sensing, vol. 30, no. 3, pp. 369–379, 2004.
[14]  A. M. Smith, P. Eddy, and J. Bugden, “Delineating within-field management zones using multi-temporal, multi-polarized airborne SAR imagery,” in Proceedings of the 25th Canadian Remote Sensing Conference, Quebec, Canada, October 2003.
[15]  E. Pottier, J.-S. Lee, and L. Ferro-Famil, Polsarpro V3.0—Lecture Notes, Advanced Concepts, 2006.
[16]  M. A. Niang, M. C. Nolin, and M. Bernier, “Potential of C-band multi-polarized and polarimetric SAR data for soil drainage classification and mapping,” in Geoscience and Remote Sensing : New Achievements, P. Imperator and D. Riccio, Eds., pp. 163–176, InTech, Vienna, Austria, 2010.
[17]  A. T. Cialella, R. C. Dubayah, W. T. Lawrence, and E. R. Levine, “Predicting soil drainage class using remotely sensed and digital elevation data,” Photogrammetric Engineering and Remote Sensing, vol. 63, no. 2, pp. 171–178, 1997.
[18]  K. S. Lee, G. B. Lee, and E. J. Tyler, “Thematic Mapper and digital elevation modeling of soil characteristics in hilly terrain,” Soil Science Society of America Journal, vol. 52, no. 4, pp. 1104–1107, 1988.
[19]  J. Liu, E. Pattey, M. C. Nolin, J. R. Miller, and O. Ka, “Mapping within-field soil drainage using high resolution remote and proximal sensing data,” Geoderma, vol. 143, no. 3-4, pp. 261–272, 2008.
[20]  K. S. Lee, G. B. Lee, and E. J. Tyler, “Determination of soil characteristics from Thematic Mapper data of a cropped organic-inorganic soil landscape,” Soil Science Society of America Journal, vol. 52, no. 4, pp. 1100–1104, 1988.
[21]  E. R. Levine, R. G. Knox, and W. T. Lawrence, “Relationships between soil properties and vegetation at the Northern Experimental Forest, Howland, Maine,” Remote Sensing of Environment, vol. 47, no. 2, pp. 231–241, 1994.
[22]  T. V. Korolyuk and H. V. Shcherbenko, “Compiling soil maps on the basis of remotely-sensed data digital processing: soil interpretation,” International Journal of Remote Sensing, vol. 15, no. 7, pp. 1379–1400, 1994.
[23]  L. Lamontagne, A. Martin, and M. C. Nolin, étude Pédologique du Bassin Versant du Bras d’Henri, Laboratoires de pédologie et d’agriculture de précision, Centre de recherche et de développement sur les sols et les grandes cultures, Service national d’information sur les terres et les eaux, Direction Générale de la Recherche, Agriculture et Agroalimentaire Canada, Quebec, Canada, 2010.
[24]  M. C. Nolin, L. Lamontagne, and J. C. Dubé, “Cadre méthodologique d'une étude détaillée des sols et son application en terrain plat,” Bulletin Technique 1994-4F, Direction Générale de la Recherche. AAC. Ste-Foy, Quebec, Canada, 1994.
[25]  J. H. Day, Ed., The Canada Soil Information System (CanSIS), Manual for Describing Soil in the Field, 1982.
[26]  J. Miller and J. Franklin, “Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence,” Ecological Modelling, vol. 157, no. 2-3, pp. 227–247, 2002.
[27]  F. M. Henderson and J. A. Lewis, Principles and Applications of Imaging Radar, Manual of Remote Sensing, vol. 2, John Wiley & Sons, New York, NY, USA, 3rd edition, 1998.
[28]  W. Wagner, C. Pathe, M. Doubkova et al., “Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture Radar (ASAR),” Sensors, vol. 8, no. 2, pp. 1174–1197, 2008.
[29]  G. C. Topp, Y. T. Galganov, B. C. Ball, and M. R. Carter, “Soil water desorption curves,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 569–580, Lewis Publishers, Boca Raton, Fla, USA, 1993.
[30]  J. L. B. Culley, “Density and compressibility,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 529–540, Lewis Publishers, Boca Raton, Fla, USA, 1993.
[31]  F. Baret and G. Guyot, “Potentials and limits of vegetation indices for LAI and APAR assessment,” Remote Sensing of Environment, vol. 35, no. 2-3, pp. 161–173, 1991.
[32]  A. Bannari, A. R. Huete, D. Morin, and F. Zagolski, “Effects of the colour and brightness of the Sun on vegetation indices de vegetation,” International Journal of Remote Sensing, vol. 17, no. 10, pp. 1885–1906, 1996.
[33]  M. T. Yilmaz, E. R. Hunt Jr., L. D. Goins, S. L. Ustin, V. C. Vanderbilt, and T. J. Jackson, “Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery,” Remote Sensing of Environment, vol. 112, no. 2, pp. 350–362, 2008.
[34]  P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation leaf water content using reflectance in the optical domain,” Remote Sensing of Environment, vol. 77, no. 1, pp. 22–33, 2001.
[35]  E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6s: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, 1997.
[36]  W. Peng, D. B. Wheeler, J. C. Bell, and M. G. Krusemark, “Delineating patterns of soil drainage class on bare soils using remote sensing analyses,” Geoderma, vol. 115, no. 3-4, pp. 261–279, 2003.
[37]  T. Hengl, G. B. M. Heuvelink, and A. Stein, “A generic framework for spatial prediction of soil variables based on regression-kriging,” Geoderma, vol. 120, no. 1-2, pp. 75–93, 2004.
[38]  J. C. Bell, R. L. Cunningham, and M. W. Havens, “Soil drainage class probability mapping using a soil-landscape model,” Soil Science Society of America Journal, vol. 58, no. 2, pp. 464–470, 1994.
[39]  R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1963.
[40]  M. Xu, P. Watanachaturaporn, P. K. Varshney, and M. K. Arora, “Decision tree regression for soft classification of remote sensing data,” Remote Sensing of Environment, vol. 97, no. 3, pp. 322–336, 2005.
[41]  J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[42]  P. Legendre and L. Legendre, Numerical Ecology, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1998.
[43]  V. Di Gesù and V. Starovoitov, “Distance-based functions for image comparison,” Pattern Recognition Letters, vol. 20, no. 2, pp. 207–214, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133