This paper discusses the effects of trees on soil fertility, with a focus on agricultural systems in Amazonia. Relevant literature concerning the effects of trees on soil physical and chemical properties in tropical, subtropical, and temperate regions is reviewed, covering both natural ecosystems and agroecosystems. Soil carbon, in the form of organic matter, is considered as an indicator of biological activity as well as in relation to policy issues such as carbon sequestration and climate change. In the case of tropical soils and Amazonia, information on the effects of trees on soils is discussed in the context of traditional agriculture systems, as well as in regard to the development of more sustainable agricultural alternatives for the region. Lastly, attention is given to a case study in the savanna region of Roraima, northern Brazil, where a chronosequence of indigenous homegarden agroforestry systems showed clear effects of management practices involving trees on soil fertility. The use of diverse tree species and other practices employed in agroforestry systems can represent alternative forms of increasing soil fertility and maintaining agricultural production, with important practical applications for the sustainability of tropical agriculture. 1. Introduction According to a study by the World Agroforestry Centre, ICRAF, 43% of the planet’s agricultural lands (more than a billion hectares) has more than 10% tree cover [1]. A lesser but still significant area of agricultural land, 160 million hectares, has more than 50% tree cover. The potential of trees to bring improvements in nutrition, income, housing, health, energy needs, and environmental sustainability in the agricultural landscape has guided ICRAF’s mission, with the presence of trees being the principal component of an “evergreen agriculture” [2]. Within the array of benefits brought by trees, an important element is the positive effect of trees on soil properties and consequently benefits for crops. This paper explores current knowledge as to this relation between trees and soil, based on agroforestry systems research, as well as studies innon-agricultural or natural environments that demonstrate effects of trees on soil. Although we consider information from various ecosystems and biomes, the focus will be on Amazonia, where the authors have most of their experience. This focus on Amazonia is also due to the strong policy demands for the development of more sustainable agricultural systems in the region, as alternatives to forms of land use that have shown significant and negative
References
[1]
R. J. Zomer, A. Trabucco, R. Coe, and F. Place, Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry, ICRAF Working Paper no. 89, World Agroforestry Centre, Nairobi, Kenya, 2009.
[2]
World Agroforestry Centre, 2008, http://www.worldagroforestry.org/downloads/publications/PDFS/B15732.pdf.
[3]
R. Porro, Ed., Alternativa agroflorestal na Amaz?nia em transforma??o, Embrapa Informa??o Tecnológica, Brasília, Brazil, 2009.
[4]
P. K. R. Nair, Agroforestry Systems in the Tropics, Kluwer, Norwell, Mass, USA, 1989.
[5]
R. E. Ricklefs, A Economia da Natureza, Guanabara Koogan, Rio de Janeiro, Brazil, 3rd edition, 1996.
[6]
A. Primavesi, “A fertilidade do solo,” Agroecologia Hoje, vol. 8, article 5, 2001.
[7]
F. J. Luizao, “Litter production and mineral element input to the forest floor in a Central Amazonian forest,” GeoJournal, vol. 19, no. 4, pp. 407–417, 1989.
[8]
P. M. Fearnside and R. I. Barbosa, “Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia,” Forest Ecology and Management, vol. 108, no. 1-2, pp. 147–166, 1998.
[9]
A. Primavesi, Manejo ecológico do solo: a agricultura em regi?es tropicais, Nobel, S?o Paulo, Brazil, 2002.
[10]
F. J. Luiz?o and R. C. C. Luiz?o, “Matéria organica do solo em Roraima,” in Homem, Ambiente e Ecologia no Estado de Roraima, R. I. Barbosa, E. J. G. Ferreira, and E. G. Castellón, Eds., pp. 363–376, INPA, Manaus, Brazil, 1997.
[11]
S. J. F. Ferreira, F. J. Luiz?o, S. á. F. Miranda, M. D. S. R. Da Silva, and A. R. T. Vital, “Nutrients in soil solution in an upland forest submitted to selective logging in central Amazonia,” Acta Amazonica, vol. 36, no. 1, pp. 59–68, 2006.
[12]
P. J. Kleinman, D. Pimentel, and R. B. Bryant, “The ecological sustainability of slash-and-burn agriculture,” Agriculture, Ecosystems and Environment, vol. 52, no. 2-3, pp. 235–249, 1995.
[13]
P. Santilli, “Ocupa??o territorial Macuxi: aspectos históricos e políticos,” in Homem, Ambiente e Ecologia no Estado de Roraima, R. I. Barbosa, E. J. G. Ferreira, and E. G. Castellón, Eds., pp. 49–64, INPA, Manaus, Brazil, 1997.
[14]
M. Mazoyer and L. Roudart, História das agriculturas no mundo: do neolítico à crise contemporanea, UNESP, S?o Paulo and NEAD, Brasília, Brazil, 2010.
[15]
P. J. Zinke, “The pattern of influence of individual forest trees on soil properties,” Ecology, vol. 43, pp. 130–133, 1962.
[16]
A. J. Belsky, R. G. Amundson, J. M. Duxbury, S. J. Riha, A. R. Ali, and S. M. Mwonga, “The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya,” Journal of Applied Ecology, vol. 26, no. 3, pp. 1005–1024, 1989.
[17]
I. C. Burke, W. K. Lauenroth, M. A. Vinton et al., “Plant-soil interactions in temperate grasslands,” Biogeochemistry, vol. 42, no. 1-2, pp. 121–143, 1998.
[18]
W. H. Schlesinger, J. A. Raikks, A. E. Hartley, and A. F. Cross, “On the spatial pattern of soil nutrients in desert ecosystems,” Ecology, vol. 77, no. 2, pp. 364–374, 1996.
[19]
W. E. Frost and S. B. Edinger, “Effects of tree canopies on soil characteristics of annual rangeland,” Journal of Range Management, vol. 44, no. 3, pp. 286–288, 1991.
[20]
A. L. Ulery, R. C. Graham, O. A. Chadwick, and H. B. Wood, “Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine,” Geoderma, vol. 65, no. 1-2, pp. 121–134, 1995.
[21]
A. C. Finzi, C. D. Canham, and N. Van Breemen, “Canopy tree-soil interactions within temperate forests: species effects on pH and cations,” Ecological Applications, vol. 8, no. 2, pp. 447–454, 1998.
[22]
F. A. Dijkstra, “Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US,” Forest Ecology and Management, vol. 175, no. 1–3, pp. 185–194, 2003.
[23]
P. B. Reich, J. Oleksyn, J. Modrzynski et al., “Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species,” Ecology Letters, vol. 8, no. 8, pp. 811–818, 2005.
[24]
R. J. Scholes and S. R. Archer, “Tree-grass interactions in Savannas,” Annual Review of Ecology and Systematics, vol. 28, pp. 517–544, 1997.
[25]
E. G. Jobbágy and R. B. Jackson, “The distribution of soil nutrients with depth: global patterns and the imprint of plants,” Biogeochemistry, vol. 53, no. 1, pp. 51–77, 2001.
[26]
M. Arianoutsou, “Atmospheric deposition of nutrients in a coastal maquis ecosystem of northeastern Greece,” International Journal of Biometeorology, vol. 33, no. 2, pp. 124–130, 1989.
[27]
C. Bertin, X. Yang, and L. A. Weston, “The role of root exudates and allelochemicals in the rhizosphere,” Plant and Soil, vol. 256, no. 1, pp. 67–83, 2003.
[28]
P. K. R. Nair, V. D. Nair, B. Mohan Kumar, and J. M. Showalter, “Carbon sequestration in agroforestry systems,” Advances in Agronomy, vol. 108, pp. 237–307, 2010.
[29]
P. K. R. Nair, B. M. Kumar, and V. D. Nair, “Agroforestry as a strategy for carbon sequestration,” Journal of Plant Nutrition and Soil Science, vol. 172, no. 1, pp. 10–23, 2009.
[30]
A. Takimoto, P. K. R. Nair, and V. D. Nair, “Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel,” Agriculture, Ecosystems and Environment, vol. 125, no. 1–4, pp. 159–166, 2008.
[31]
S. K. Saha, P. K. R. Nair, V. D. Nair, and B. M. Kumar, “Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems,” Plant and Soil, vol. 328, no. 1, pp. 433–446, 2010.
[32]
D. S. Howlett, M. R. Mosquera-Losada, P. K. R. Nair, V. D. Nair, and A. Rigueiro-Rodrigues, “Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain,” Journal of Environmental Quality, vol. 40, no. 3, pp. 825–832, 2011.
[33]
R. G. Tonucci, P. K. R. Nair, V. D. Nair, R. Garcia, and F. S. Bernardino, “Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado,” Journal of Environmental Quality, vol. 40, no. 3, pp. 833–841, 2011.
[34]
R. Derpsch, “No-tillage and conservation agriculture: a progress report,” in No-Till Farming Systems, T. Goddard, M. Zoebisch, Y. Gan, W. Ellis, A. Watson, and S. Sombatpanit, Eds., pp. 7–39, World Association of Soil and Water Conservation. Special Publication No. 3, 2008.
[35]
P. Lavelle and B. Pashanasi, “Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto),” Pedobiologia, vol. 33, no. 5, pp. 283–292, 1989.
[36]
P. Lavelle, A. Chauvel, and C. Fragoso, “Faunal activity in acid soils,” in Plant Soil Interactions at Low pH, R. A. Date, Ed., pp. 201–211, Springer, Berlin, Germany, 1995.
[37]
E. Barros, J. Mathieu, S. Tapia-Coral, A. R. L. Nascimento, and P. Lavelle, “Comunidades da macrofauna do solo da Amaz?nia Brasileira,” in Biodiversidade do Solo em Ecossistemas Brasileiros, F. M. S. Moreira, J. O. Siqueira, and L. Brussaard, Eds., pp. 171–191, Editora UFLA, Minas Gerais, Brazil, 2008.
[38]
S. C. Tapia-Coral, F. J. Luiz?o, and E. V. Wandelli, “Macrofauna da liteira em sistemas agroflorestais sobre pastagens abandonadas na Amaz?nia Central,” Acta Amaz?nica, vol. 29, no. 3, pp. 447–495, 1999.
[39]
P. L. Leal, S. L. Stürmer, and J. O. Siqueira, “Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the amazon, Brazil,” Brazilian Journal of Microbiology, vol. 40, no. 1, pp. 111–121, 2009.
[40]
E. D. C. Jesus, T. L. Marsh, J. M. Tiedje, and F. M. D. S. Moreira, “Changes in land use alter the structure of bacterial communities in Western Amazon soils,” ISME Journal, vol. 3, no. 9, pp. 1004–1011, 2009.
[41]
P. Lavelle, E. Barros, E. Blanchart et al., “SOM management in the tropics: why feeding the soil macrofauna?” Nutrient Cycling in Agroecosystems, vol. 61, no. 1-2, pp. 53–61, 2001.
[42]
V. V. Souza, R. C. Pinho, and I. Jucksch, “Produ??o e composi??o de serrapilheira em um sistema agroflorestal com café (Coffea arabica) em Vi?osa-MG,” in Anais do V Congresso Brasileiro de Sistemas Agroflorestais, Curitiba, Brazil, 2004.
[43]
G. P. Araujo and L. S. Collier, “Parametros de fertilidade dos solos em sistemas agroflorestais em Esperantina-TO,” in Anais do VI Congresso Brasileiro de Sistemas Agroflorestais, Campos, Brazil, 2006.
[44]
C. Jaramillo-Botero, R. H. S. Santos, Junior P. Marco, T. M. Pontes, P. Fardin, and F. Sarmento, “Efeito da distribui??o espacial das árvores sobre a produ??o de cafeeiros em sistema agroflorestal na zona da mata de Minas Gerais, Brasil,” in Anais do VI Congresso Brasileiro de Sistemas Agroflorestais, Campos, Brazil, 2006.
[45]
R. C. Pinho, V. V. Souza, and I. Jucksch, “Contribui??o de espécies arbóreas na ciclagem de nutrientes via precipita??o em um sistema agroflorestal com café (Coffea arabica) no município de Vi?osa, MG,” in Anais do IV Congresso Brasileiro de Sistemas Agroflorestais, Ilhéus, Brazil, 2002.
[46]
J. Jesus, M. S. Bernardes, C. A. Righi, A. M. P. Lunz, J. L. Favarin, and F. T. Camargo, “Avalia??o da fertilidade do solo e teor foliar de K do cafeeiro (Coffea arabica L.) em sistema agroflorestal em aléia de seringueira (Hevea brasiliensis Muell. Arg.) e em monocultivo,” in Proceedings of the Anais do VI Congresso Brasileiro de Sistemas Agroflorestais, Campos, Brazil, 2006.
[47]
G. Schroth, J. Lehmann, M. R. L. Rodrigues, E. Barros, and J. L. V. Macêdo, “Plant-soil interactions in multistrata agroforestry in the humid tropics,” Agroforestry Systems, vol. 53, no. 2, pp. 85–102, 2001.
[48]
P. M. Vitousek, K. Cassman, C. Cleveland et al., “Towards an ecological understanding of biological nitrogen fixation,” Biogeochemistry, vol. 57-58, pp. 1–45, 2002.
[49]
S. Mochiutti and J. A. L. Queiroz, “Aporte de nutrientes ao solo via serrapilheira em pousios florestais com taxi-branco e capoeira no Amapá,” in Anais do VI Congresso Brasileiro de Sistemas Agroflorestais, Campos, Brazil, 2006.
[50]
H. Kreibich, J. Lehmann, G. Scheufele, and J. Kern, “Nitrogen availability and leaching during the terrestrial phase in a várzea forest of the Central Amazon floodplain,” Biology and Fertility of Soils, vol. 39, no. 1, pp. 62–64, 2003.
[51]
C. Pye-Smith, Farming trees, banishing hunger. How an agroforestry programme is helping smallholders in Malawi to grow more food and improve their livelihoods, World Agroforestry Centre, Nairobi, Kenya, 2008.
[52]
G. Sileshi, F. K. Akinnifesi, O. C. Ajayi, and F. Place, Evidence for impact of green fertilizers on maize production in sub-Saharan Africa: a meta-analysis, ICRAF Occasional Paper No. 10, World Agroforestry Centre, Nairobi, Kenya, 2009.
[53]
F. A. De Alcantara, A. E. Furtini Neto, M. B. De Paula, H. A. De Mesquita, and J. A. Muniz, “Green manuring in the recovery of degraded oxisoil fertility,” Pesquisa Agropecuaria Brasileira, vol. 35, no. 2, pp. 277–288, 2000.
[54]
L. R. Queiroz, F. C. Coelho, D. G. Barroso, and V. A. V. Queiroz, “Evaluation of phytomass productivity and N, P and K accumulation of shrub legumes in alley cropping system in Campos dos Goytacazes (RJ),” Revista Arvore, vol. 31, no. 3, pp. 383–390, 2007.
[55]
E. A. Delarmelinda, F. A. R. Sampaio, J. R. M. Dias, L. B. Tavella, and J. S. de Silva, “Green manure and changes on chemical characteristics of a soil in the Ji-Paraná-RO region,” Acta Amazonica, vol. 40, no. 3, pp. 625–628, 2010.
[56]
E. G. Neves, J. B. Petersen, R. N. Bartone, and C. A. Silva, “Historical and socio-cultural origins of Amazonian dark earths,” in Amazonian Dark Earths: Origin, Properties, Management, J. Lehmann, D. Kern, and B. Glaser, Eds., pp. 29–50, Kluwer Academic Publishers, 2003.
[57]
C. L. Bergo, E. P. Pacheco, H. A. De Mendon?a, and J. T. D. S. Marinho, “Evaluation of legume species for coffee plants formation in the segment of family farms in Acre,” Acta Amazonica, vol. 36, no. 1, pp. 19–24, 2006.
[58]
L. V. C. Gon?alves, F. G. B. Barreto, L. C. G. Gomes, E. M. G. Duarte, and I. M. C. Cardoso, “Contribui??es de árvores nativas da Mata Atlantica para a ciclagem de nutrientes em sistemas agroflorestais,” in Anais do Simpósio Mineiro de Ciência do Solo, Vi?osa, Brazil, 2010.
[59]
D. A. Posey, “Manejo da floresta secundária, capoeiras, campos e cerrados (Kayapó),” in Suma Etnológica Brasileira, pp. 173–185, FINEP, 1987.
[60]
B. G. Ribeiro, “Classifica??o dos solos e horticultura Desana,” in 1st International Congress of Ethnobiology, vol. 2, pp. 27–49, Belém, Brazil, 1990.
[61]
R. P. Miller and P. K. R. Nair, “Indigenous agroforestry systems in Amazonia: from prehistory to today,” Agroforestry Systems, vol. 66, no. 2, pp. 151–164, 2006.
[62]
C. R. Clement, “1492 and the loss of amazonian crop genetic resources. I. The relation between domestication and human population decline,” Economic Botany, vol. 53, no. 2, pp. 188–202, 1999.
[63]
D. W. Lathrap, “Our father the cayman, our mother the gourd: Spinden revisited, or a unitary model for the emergence of agriculture in the New World,” in Origins of Agriculture, pp. 713–751, Mouton, The Hague, The Netherlands, 1977.
[64]
R. P. Miller, J. W. Penn, and J. Leeuwen, “Amazonian homegardens: their ethnohistory and potential contribution to agroforestry development,” in Tropical Homegardens: A Time-Tested Example of Sustainable Agroforestry, B. M. Kumar and P. K. R. Nair, Eds., pp. 43–60, Springer, 2006.
[65]
C. Erickson, “Historical ecology and future explorations,” in Amazonian Dark Earths: Origin, Properties, Management, J. Lehmann, D. Kern, and B. Glaser, Eds., pp. 455–500, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2003.
[66]
B. Glaser, W. Zech, and W. I. Woods, “History, current knowledge and future perspectives of geoecological research concerning the origin of Amazonian anthropogenic dark earths (Terra Preta),” in Exploration in Amazonian Dark Earths, B. Glaser and W. I. Woods, Eds., pp. 9–17, Springer, Berlin, Germany, 2004.
[67]
A. B. Junqueira, G. H. Shepard, and C. R. Clement, “Secondary Forests on Anthropogenic Soils of the Middle Madeira River: Valuation, Local Knowledge, and Landscape Domestication in Brazilian Amazonia,” Economic Botany, vol. 65, no. 1, pp. 85–99, 2011.
[68]
B. M. Kumar, S. J. George, and S. Chinnamani, “Diversity, structure and standing stock of wood in the homegardens of Kerala in peninsular India,” Agroforestry Systems, vol. 25, no. 3, pp. 243–262, 1994.
[69]
R. M. B. Lima, Descri??o, Composi??o e Manejo dos Cultivos Mistos de Quintal naVárzea da "Costa do Caldeir?o", M.S. dissertation, INPA/UFAM, Manaus, Brazil, 1994.
[70]
E. Brocki, Sistemas agroflorestais de cultivo e pousio: etnoconhecimento de agricultores familiares do lago do Paru (Manacapuru, AM), Tese de doutorado, INPA/UA, Manaus, Brazil, 2001.
[71]
W. M. Denevan, “Semi-intensive pre-european cultivation and the origins of anthropogenic dark earths in Amazonia,” in Exploration in Amazonian Dark Earths, B. Glaser and W. I. Woods, Eds., pp. 135–143, Springer, Berlin, Germany, 2004.
[72]
A. Peyre, A. Guidal, K. F. Wiersum, and F. Bongers, “Dynamics of homegarden structure and function in Kerala, India,” Agroforestry Systems, vol. 66, no. 2, pp. 101–115, 2006.
[73]
R. C. Pinho, Quintais agroflorestais indígenas em área de savana (Lavrado) na Terra Indígena Ara?á, Roraima, dissertation, INPA/UFAM, Manaus, Brazil, 2008.
[74]
R. C. Pinho, L. D. Magalh?es, R. P. Miller, K. Uguen, and S. S. Alfaia, “Description of homegardens in Ara?á Indigenous Land, in the Lavrado (savannas) of Roraima, Brazil,” in 2nd World Congress of Agroforestry, Nairobi, Kenya, 2009.
[75]
R. C. Pinho, S. S. Alfaia, R. P. Miller et al., “Islands of fertility: soil improvement under indigenous homegardens in the savannas of Roraima, Brazil,” Agroforestry Systems, vol. 81, no. 3, pp. 235–247, 2011.
[76]
J. F. Vale Júnior and M. I. L. Souza, “Caracteriza??o e distribui??o dos solos das savanas de Roraima,” in Savanas de Roraima: Etnoecologia, Biodiversidade e Potencialidades Agrossilvipastoris, R. I. Barbosa, H. A. M. Xaud, and J. M. Costa e Sousa, Eds., pp. 79–92, FEMACT, Boa Vista, Brazil, 2005.
[77]
V. M. B. Freitas, Dinamica do nitrogênio em capoeiras e florestas em savanas de Roraima, M.S. dissertation, Instituto Nacional de Pesquisas da Amaz?nia, Manaus, Brazil, 2008.
[78]
A. E. S. Soares, Nutrientes e Carbono no Solo em áreas com diferentes Sistemas de Uso na Regi?o do Alto Solim?es (Benjamin Constant AM), M.S. dissertation, Instituto Nacional de Pesquisas da Amaz?nia, 2006.
[79]
J. L. Vivan, Agricultura e Florestas: Princípios de uma Integra??o Vital, Agropecuária, Guaíba, Brazil, 1998.
[80]
Empresa Brasileira de Pesquisa Agropecuária—Embrapa and Instituto Nacional de Pesquisas Espaciais—INPE, Levantamento de informa??es de uso e cobertura da terra na Amaz?nia, Sumário Executivo, Brasilia, Brazil, 2011.
[81]
F. M. M. Magalh?es, L. M. S. Magalh?es, L. A. Oliveira, and J. Dobereiner, “Ocorrência de nodula??o em leguminosas florestais de terra firme nativas da regi?o de Manaus—AM,” Acta Amazonica, vol. 12, no. 3, pp. 509–514, 1982.
[82]
L. A. G. Souza, M. F. Silva, and F. W. Moreira, “Capacidade de nodula??o de cem leguminosas da Amaz?nia,” Acta Amazonica, vol. 24, no. 1-2, pp. 9–18, 1994.
[83]
C. M. S. De Andrade, J. F. Valentim, and J. D. C. Carneiro, “Baginha trees (Stryphnodendron guianense (Aubl.) Benth.) in cultivated pasture ecosystems in the Western Amazon,” Revista Brasileira de Zootecnia, vol. 31, no. 2, pp. 574–582, 2002.
[84]
A. M. N. Izac, “Economic aspects of soil fertility management and agroforestry practices,” in Trees, Crops and Soil Fertility, G. Schroth and F. L. Sinclair, Eds., pp. 13–37, CAB International, 2003.