全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Management Practices on Soil Microstructure and Surface Microrelief

DOI: 10.1155/2012/608275

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil surface roughness (SSR) and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI) was strip-tilled during early fall (May 2010), and the second site (JBP) was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1?m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5?μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility. 1. Introduction Soil surface roughness (SSR), which describes the microvariations in soil elevations primarily resulting from tillage practices and textural porosity, is one of the major factors affecting wind and water erosion [1–4]. SSR is a direct indicator of the degradation of soil microstructure, which is mainly due to a loss of physical, chemical, and biological properties [1, 2, 5]. In this case, SSR is closely related to erosion, which is the primary cause for the loss of soil structure and organic matter, and it leads to a decrease in soil productivity and reduced fauna diversity [4, 6]. SSR promotes soil biota activity, which plays an important role in the rehabilitation of sealed soil surfaces and the restructuring of soils, particularly after compaction events [7]. SSR is mainly affected by management practices and, depending on the techniques used, SSR can increase the number and variability of microorganisms through the improvement of soil porosity and flow water in the vadose zone [8]. The increase in microorganism activity is very important in most biogeochemical cycles within soils because it improves the physical and biological state of the soil [4, 9, 10]. Thus, tillage influences the development of different types of microorganisms. Techniques that conserve pore systems tend to enhance the activity of microorganisms and conserve the biota that are beneficial to the development of crops [7, 11, 12]. However, the study of soil

References

[1]  R. G. Moreno, A. Saa Requejo, A. M. Tarquis Alonso, S. Barrington, and M. C. Díaz, “Shadow analysis: a method for measuring soil surface roughness,” Geoderma, vol. 146, no. 1-2, pp. 201–208, 2008.
[2]  R. G. Moreno, M. C. Díaz álvarez, A. M. Tarquis, A. Paz González, and A. Saa Requejo, “Shadow analysis of soil surface roughness compared to the chain set method and direct measurement of micro-relief,” Biogeosciences, vol. 7, no. 8, pp. 2477–2487, 2010.
[3]  N. Nunan, K. Ritz, M. Rivers, D. S. Feeney, and I. M. Young, “Investigating microbial micro-habitat structure using X-ray computed tomography,” Geoderma, vol. 133, no. 3-4, pp. 398–407, 2006.
[4]  D. Or, B. F. Smets, J. M. Wraith, A. Dechesne, and S. P. Friedman, “Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review,” Advances in Water Resources, vol. 30, no. 6-7, pp. 1505–1527, 2007.
[5]  K. E. Saxton, “Wind erosion and its impact on off-site air quality in the Columbia Plateau—an integrated research plan,” Transactions of the American Society of Agricultural Engineers, vol. 38, no. 4, pp. 1031–1038, 1995.
[6]  L. J. Cihacek, M. D. Sweeney, and E. J. Deibert, “Characterization of wind erosion sediments in the red river valley of North Dakota,” Journal of Environmental Quality, vol. 22, no. 2, pp. 305–310, 1993.
[7]  R. R?hrig, M. Langmaack, S. Schrader, and O. Larink, “Tillage systems and soil compaction—their impact on abundance and vertical distribution of Enchytraeidae,” Soil and Tillage Research, vol. 46, no. 1-2, pp. 117–127, 1998.
[8]  M. Kutílek and L. Jendele, “The structural porosity in soil hydraulic functions—a review,” Soil and Water Research, vol. 3, supplement 1, pp. S7–S20, 2008.
[9]  A. R. Dexter, “Soil physical quality: part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth,” Geoderma, vol. 120, no. 3-4, pp. 201–214, 2004.
[10]  A. R. Dexter, E. A. Czyz, G. Richard, and A. Reszkowska, “A user-friendly water retention function that takes account of the textural and structural pore spaces in soil,” Geoderma, vol. 143, no. 3-4, pp. 243–253, 2008.
[11]  A. Papadopoulos, N. R. A. Bird, A. P. Whitmore, and S. J. Mooney, “Investigating the effects of organic and conventional management on soil aggregate stability using X-ray computed tomography,” European Journal of Soil Science, vol. 60, no. 3, pp. 360–368, 2009.
[12]  I. M. Young, J. W. Crawford, and C. Rappoldt, “New methods and models for characterising structural heterogeneity of soil,” Soil and Tillage Research, vol. 61, no. 1-2, pp. 33–45, 2001.
[13]  J. W. Crawford, J. A. Harris, K. Ritz, and I. M. Young, “Towards an evolutionary ecology of life in soil,” Trends in Ecology and Evolution, vol. 20, no. 2, pp. 81–87, 2005.
[14]  J. M. Oades, “The role of biology in the formation, stabilization and degradation of soil structure,” Geoderma, vol. 56, no. 1–4, pp. 377–400, 1993.
[15]  F. J. Larney, A. J. Cessna, and M. S. Bullock, “Herbicide transport on wind-eroded sediment,” Journal of Environmental Quality, vol. 28, no. 5, pp. 1412–1421, 1999.
[16]  A. Hadas, “Long-term tillage practice effects on soil aggregation modes and strength,” Soil Science Society of America Journal, vol. 51, no. 1, pp. 191–197, 1987.
[17]  A. R. Dexter, “Advances in characterization of soil structure,” Soil and Tillage Research, vol. 11, no. 3-4, pp. 199–238, 1988.
[18]  C. M. Monreal, M. Schnitzer, H. R. Schulten, C. A. Campbell, and D. W. Anderson, “Soil organic structures in macro and microaggregates of a cultivated Brown Chernozem,” Soil Biology and Biochemistry, vol. 27, no. 6, pp. 845–853, 1995.
[19]  A. N. Kravchenko, G. P. Robertson, X. Hao, and D. G. Bullock, “Management practice effects on surface total carbon: differences in spatial variability patterns,” Agronomy Journal, vol. 98, no. 6, pp. 1559–1568, 2006.
[20]  I. M. Young and K. Ritz, “Tillage, habitat space and function of soil microbes,” Soil and Tillage Research, vol. 53, no. 3-4, pp. 201–213, 2000.
[21]  I. M. Young, J. W. Crawford, N. Nunan, W. Otten, and A. Spiers, “Microbial distribution in soils: physics and scaling,” Advances in Agronomy C, vol. 100, pp. 81–121, 2009.
[22]  K. M. Hati, A. Swarup, A. K. Dwivedi, A. K. Misra, and K. K. Bandyopadhyay, “Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring,” Agriculture, Ecosystems and Environment, vol. 119, no. 1-2, pp. 127–134, 2007.
[23]  J. Six, E. T. Elliott, and K. Paustian, “Aggregate and soil organic matter dynamics under conventional and no-tillage systems,” Soil Science Society of America Journal, vol. 63, no. 5, pp. 1350–1358, 1999.
[24]  N. G. Juma, “Interrelationships between soil structure/texture, soil biota/soil organic matter and crop production,” Geoderma, vol. 57, no. 1-2, pp. 3–30, 1993.
[25]  M. Deurer, D. Grinev, I. Young, B. E. Clothier, and K. Müller, “The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand,” European Journal of Soil Science, vol. 60, no. 6, pp. 945–955, 2009.
[26]  M. Feser, J. Gelb, H. Chang et al., “Sub-micron resolution CT for failure analysis and process development,” Measurement Science and Technology, vol. 19, no. 9, Article ID 094001, 2008.
[27]  J. F. Darbyshire, S. J. Chapman, M. V. Cheshire et al., “Methods for the study of interrelationships between micro-organisms and soil structure,” Geoderma, vol. 56, no. 1–4, pp. 3–23, 1993.
[28]  J. M. Blair, R. E. Falconer, A. C. Milne, I. M. Young, and J. W. Crawford, “Modeling three-dimensional microstructure in heterogeneous media,” Soil Science Society of America Journal, vol. 71, no. 6, pp. 1807–1812, 2007.
[29]  S. de Gryze, L. Jassogne, J. Six, H. Bossuyt, M. Wevers, and R. Merckx, “Pore structure changes during decomposition of fresh residue: X-ray tomography analyses,” Geoderma, vol. 134, no. 1-2, pp. 82–96, 2006.
[30]  B. W. Hapke, “A theoretical photometric function for the lunar surface,” Journal of Geophysical Research, vol. 68, pp. 4571–4586, 1963.
[31]  R. F. Isbell, The Australian Soil Classification, Revised Edition, CSIRO, Canberra, Australia, 2002.
[32]  Bureau of Meteorology, Australian Government, http://www.bom.gov.au/, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133