全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolution of Soil Biochemical Parameters in Rainfed Crops: Effect of Organic and Mineral Fertilization

DOI: 10.1155/2012/826236

Full-Text   Cite this paper   Add to My Lib

Abstract:

In organic farming, crop fertilization is largely based on the decomposition of organic matter and biological fixation of nutrients. It is therefore necessary to develop studies conducted to know and understand the soil biological processes for the natural nutrient supplies. The effect of three fertilizer managements (chemical with synthetic fertilizers, organic with 2500?kg compost ha?1, and no fertilizer) in a rainfed crop rotation (durum wheat-fallow-barley-vetch as green manure) on different soil biochemical parameters in semi-arid conditions was investigated. Soil organic matter, microbial biomass carbon, organic matter mineralization, CO2 production-to-ATP ratio, and NO3-N content were analysed. Fertilization was only applied to cereals. The results showed the scarce effect of the organic fertilization on soil quality, which resulted more dependent on weather conditions. Only soil organic matter and NO3-N were affected by fertilization (significantly higher in the inorganic treatment, 1.28?g 100?g?1 and 17.3?ppm, resp.). Soil organic matter was maintained throughout the study period by the inclusion of a legume in the cropping system and the burying of crop residues. In fallow, soil microbial biomass carbon increased considerably (816?ng g?1), and NO3-N at the end of this period was around 35?ppm, equivalent to 100?kg N ha?1. 1. Introduction Conventional farming has been important for improving food to meet human demands but has been largely dependent on intensive inputs of synthetic fertilizers and pesticides [1, 2], both from an economic and energetic point of view. In recent years, the relationship between agriculture and the environment has changed, and concerns regarding the sustainability of agricultural production systems have come to the fore [3]. In this context, organic or ecological farming, focused on the environment and public health, is increasing worldwide [4]. Organic farming avoids the application of synthetic biocides and fertilizers [5, 6], promotes the use of renewable resources to prevent pollution [7], may reduce some negative effects attributed to conventional farming, and may have potential benefits in enhancing soil quality [2]. Thus, plant production in organic farming mainly depends on nutrient release as a function of the mineralization processes in soils. Therefore, to get an active soil microflora and an important amount of available nutrients is crucial in these productive systems, being the goal “fertilizing the soil rather than the plant” a priority among organic farmers to assure sufficient nutrient mineralization

References

[1]  C. Tu, J. B. Ristaino, and S. Hu, “Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching,” Soil Biology and Biochemistry, vol. 38, no. 2, pp. 247–255, 2006.
[2]  A. S. F. Araújo, V. B. Santos, and R. T. R. Monteiro, “Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil,” European Journal of Soil Biology, vol. 44, no. 2, pp. 225–230, 2008.
[3]  M. M. Moreno, C. Lacasta, R. Meco, and C. Moreno, “Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: results of a long-term trial,” Soil and Tillage Research, vol. 114, no. 1, pp. 18–27, 2011.
[4]  S. Melero, J. C. R. Porras, J. F. Herencia, and E. Madejon, “Chemical and biochemical properties in a silty loam soil under conventional and organic management,” Soil and Tillage Research, vol. 90, no. 1-2, pp. 162–170, 2006.
[5]  C. A. Helander and K. Delin, “Evaluation of farming systems according to valuation indices developed within a European network on integrated and ecological arable farming systems,” European Journal of Agronomy, vol. 21, no. 1, pp. 53–67, 2004.
[6]  U. J?rgensen, T. Dalgaard, and E. S. Kristensen, “Biomass energy in organic farming—the potential role of short rotation coppice,” Biomass and Bioenergy, vol. 28, no. 2, pp. 237–248, 2005.
[7]  IFOAM Norms, International Federation of Organic Agriculture Movements, 2002.
[8]  A. Flie?bach and P. M?der, “Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems,” Soil Biology and Biochemistry, vol. 32, no. 6, pp. 757–768, 2000.
[9]  J. C. García Gil, Efectos residuales y acumulativos producidos por la aplicación de compost de residuos urbanos y lodos de depuradoras sobre agrosistemas mediterráneos degradados, Ph.D. thesis, Science Faculty, Autonomous University of Madrid, Madrid, Spain, 2001.
[10]  D. L. Karlen, M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris, and G. E. Schuman, “Soil quality: a concept, definition, and framework for evaluation,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 4–10, 1997.
[11]  J. W. Doran, M. Sarrantonio, and M. A. Liebig, “Soil health and sustainability,” in Advances in Agronomy, D. L. Sparks, Ed., vol. 56, pp. 25–37, Academic Press, San Diego, Calif, USA, 1996.
[12]  S. Melero, E. Madejón, J. C. Ruiz, and J. F. Herencia, “Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization,” European Journal of Agronomy, vol. 26, no. 3, pp. 327–334, 2007.
[13]  M. R. Carter, E. G. Gregorich, D. W. Anderson, J. W. Doran, H. H. Janzen, and F. J. Pierce, “Chapter 1 Concepts of soil quality and their significance,” Developments in Soil Science, vol. 25, pp. 1–19, 1997.
[14]  E. E. Marriott and M. Wander, “Qualitative and quantitative differences in particulate organic matter fractions in organic and conventional farming systems,” Soil Biology and Biochemistry, vol. 38, no. 7, pp. 1527–1536, 2006.
[15]  D. Rotenberg, A. J. Wells, E. J. Chapman, A. E. Whitfield, R. M. Goodman, and L. R. Cooperband, “Soil properties associated with organic matter-mediated suppression of bean root rot in field soil amended with fresh and composted paper mill residuals,” Soil Biology and Biochemistry, vol. 39, no. 11, pp. 2936–2948, 2007.
[16]  A. P. Silva, L. C. Babujia, J. C. Franchini, R. A. Souza, and M. Hungria, “Microbial biomass under various soil- and crop-management systems in short- and long-term experiments in Brazil,” Field Crops Research, vol. 119, no. 1, pp. 20–26, 2010.
[17]  M. Fernández-Pascual, M. de María, and M. R. de Felipe, “Fijación biológica de nitrógeno: factores limitantes,” in Ciencia y Medio Ambiente, F. Valladares, Ed., pp. 195–202, CSIC, Madrid, Spain, 2002.
[18]  USDA, Keys to Soil Taxonomy, Tenth Edition, Soil Survey Staff, United States Department of Agriculture NRCS, 2006.
[19]  J. H. Wetters and K. L. Uglum, “Direct spectrophotometric simultaneous determination of nitrite and nitrate in the ultraviolet,” Analytical Chemistry, vol. 42, no. 3, pp. 335–340, 1970.
[20]  N. Maire, D. Borcard, E. Laczkó, and W. Matthey, “Organic matter cycling in grassland soils of the Swiss Jura mountains: biodiversity and strategies of the living communities,” Soil Biology and Biochemistry, vol. 31, no. 9, pp. 1281–1293, 1999.
[21]  D. A. Wardle and A. Ghani, “A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development,” Soil Biology and Biochemistry, vol. 27, no. 12, pp. 1601–1610, 1995.
[22]  T. H. Anderson and K. H. Domsch, “Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories,” Soil Biology and Biochemistry, vol. 22, no. 2, pp. 251–255, 1990.
[23]  E. Madejón, R. López, J. M. Murillo, and F. Cabrera, “Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain),” Agriculture, Ecosystems and Environment, vol. 84, no. 1, pp. 55–65, 2001.
[24]  S. Marinari, G. Masciandaro, B. Ceccanti, and S. Grego, “Evolution of soil organic matter changes using pyrolysis and metabolic indices: a comparison between organic and mineral fertilization,” Bioresource Technology, vol. 98, no. 13, pp. 2495–2502, 2007.
[25]  Q. R. Wang, Y. C. Li, and W. Klassen, “Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field,” Journal of Plant Nutrition, vol. 30, no. 4, pp. 623–639, 2007.
[26]  G. Pardo, J. Cavero, J. Aibar, and C. Zaragoza, “Nutrient evolution in soil and cereal yield under different fertilization type in dryland,” Nutrient Cycling in Agroecosystems, vol. 84, no. 3, pp. 267–279, 2009.
[27]  P. A. García-Galavís, C. Santamaría, J. C. Ruiz, and A. Daza, “Efecto beneficioso de la agricultura ecológica sobre los microorganismos del suelo,” in Agroecología: Referente Para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1143–1151, Madrid, Spain, 2004.
[28]  E. Farrus, M. Adrover, A. Forss, and J. Vadell, “Comparación de tres fuentes de materia orgánica sobre las características del suelo,” in Agroecología: Referente Para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1111–1123, Madrid, Spain, 2004.
[29]  Z. Huang, Z. Xu, and C. Chen, “Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia,” Applied Soil Ecology, vol. 40, no. 2, pp. 229–239, 2008.
[30]  C. Calabria, I. Bautista, and M. Valero, “índices biológicos de disponibilidad de nitrógeno en suelos de la Comunidad Valenciana,” in Agroecología: Referente para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1017–1032, Madrid, Spain, 2004.
[31]  H. G. Van Faassen and H. Van Dijk, “Manure as a source of nitrogen and phosphorus in soils,” in Animal Manure on Grassland and Fodder Crops, Fertilizer or Waste Development in Plant and Soil Sciences, H. G. van der Meer, R. J. Unwen, T. A. van Dijk, and G. C. Ennik, Eds., pp. 27–45, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133