全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biosolids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

DOI: 10.1155/2011/717863

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arid and semiarid rangelands are suitable for responsible biosolids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied biosolids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of biosolids applied at rates from 0 to 90 dry Mg?ha?1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; biosolids decomposition; and grazing animal behavior and management. Biosolids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Biosolids increased soil nitrate-nitrogen. Biosolids increased forage production and improved forage quality. Biosolids increased leaf area of grasses; photosynthetic rates were not necessarily increased by biosolids. Biosolids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in biosolids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual biosolids application rates of up to 18?Mg ha?1 are appropriate for desert rangelands. 1. Introduction Wastewater treatment produces liquid effluent and sewage sludge. When sewage sludge is further treated for pathogen control (e.g., with anaerobic digestion or composting) the resulting product is called “biosolids.” Dewatered biosolids typically have 60%–80% water content and contain a broad variety of micro- and macronutrients; about 60% of the solids content in biosolids is organic matter [1]. The US currently produces approximately 7.1 million metric tons of biosolids annually [2]. Disposal options include incineration and processing for energy recovery, landfill disposal, and land application [2]. The US EPA regulates and encourages land application both in agronomic settings and on rangelands. In fact, about 50 to 60% of annual biosolids production is used in land application [3, 4]. Land application on rangelands, especially semiarid rangelands, is particularly attractive because the climate of these ecosystems typically allows for year-around application; additionally, distance from urban areas, wide-open spaces, and large acreages in private holdings make

References

[1]  United States Environmental Protection Agency, Environmental Regulations and Technology. Use and Disposal of Municipal Wastewater Sludge, 1989, WH-595. EPA 625/10-84-003.
[2]  Water Environment Federation, Land Application and Composting of Biosolids, Q&A/Fact Sheet, Water Environment Federation, 2010.
[3]  United States Environmental Protection Agency, Biosolids Technology Fact Sheet: Land Application of Biosolids, United States Environmental Protection Agency, 2000, EPA 832-F-00-064.
[4]  The National Research Council, Biosolids Applied to Land: Advancing Standards and Practices, National Research Council. National Academy Press, Washington, DC, USA, 2002.
[5]  D. B. Wester, R. E. Sosebee, R. E. Zartman, E. B. Fish, and J. C. Villalobos, “Biosolids in a Chihuahuan desert ecosystem,” Rangelands, vol. 25, no. 4, pp. 27–32, 2003.
[6]  National Oceanic and Atmospheric Administration, Climatological Data Annual Summary, U.S. Department of Commerce, National Climatic Data Center, Asheville, NC, USA, 1995.
[7]  M. W. Benton and D. B. Wester, “Biosolids effects on tobosagrass and alkali sacaton in a Chihuahuan desert grassland,” Journal of Environmental Quality, vol. 27, no. 1, pp. 199–208, 1998.
[8]  P. Jurado and D. B. Wester, “Effects of biosolids on tobosagrass growth in the Chihuahuan desert,” Journal of Range Management, vol. 54, no. 1, pp. 89–95, 2001.
[9]  P. E. Cooley, Biosolids and chemical fertilizer application on the Chihuahuan Desert grasslands, Unpublished M.S. thesis, Texas Tech University, Lubbock, Tex, USA, 1998.
[10]  J. M. Hahm and D. B. Wester, “Effects of surface-applied biosolids on grass seedling emergence in the Chihuahuan desert,” Journal of Arid Environments, vol. 58, no. 1, pp. 19–42, 2004.
[11]  R. Mata-González, R. E. Sosebee, and C. Wan, “Physiological impacts of biosolids application in desert grasses,” Environmental and Experimental Botany, vol. 48, no. 2, pp. 139–148, 2002.
[12]  Y. Shanguo, C. Wan, R. E. Sosebee, D. B. Wester, E. B. Fish, and R. E. Zartman, “Responses of photosynthesis and water relations to rainfall in the desert shrub creosotebush Larrea tridentata as influenced by municipal biosolids,” Journal of Arid Environments, vol. 46, pp. 397–412, 2000.
[13]  R. D. Harmel, R. E. Zartman, C. Mouron, D. B. Wester, and R. E. Sosebee, “Modeling ammonia volatilization from biosolids applied to semiarid rangeland,” Soil Science Society of America Journal, vol. 61, no. 6, pp. 1794–1798, 1997.
[14]  P. Jurado-Guerra, D. B. Wester, and E. B. Fish, “Soil nitrate nitrogen dynamics after biosolids application in a tobosagrass desert grassland,” Journal of Environmental Quality, vol. 35, no. 2, pp. 641–650, 2006.
[15]  C. M. Rostagno and R. E. Sosebee, “Biosolids application in the chihuahuan desert: effects on runoff water quality,” Journal of Environmental Quality, vol. 30, no. 1, pp. 160–170, 2001.
[16]  C. M. Brenton, E. B. Fish, and R. Mata-González, “Macronutrient and trace element leaching following biosolids application on semi-arid rangeland soils,” Arid Land Research and Management, vol. 21, no. 2, pp. 143–156, 2007.
[17]  C. A. Moffet, R. E. Zartman, D. B. Wester, and R. E. Sosebee, “Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands,” Journal of Environmental Quality, vol. 34, no. 1, pp. 299–311, 2005.
[18]  W. F. Jaynes, R. E. Zartman, R. E. Sosebee, and D. B. Wester, “Biosolids decomposition after surface applications in west Texas,” Journal of Environmental Quality, vol. 32, no. 5, pp. 1773–1781, 2003.
[19]  H. Domínguez-Caraveo, P. Jurado, and A. Melgoza-Castillo, “Emergence and survival of blue grama with biosolids under greenhouse conditions,” Journal of Arid Environments, vol. 74, no. 1, pp. 87–92, 2010.
[20]  R. Mata-González, R. E. Sosebee, and C. Wan, “Nitrogen in desert grasses as affected by biosolids, their time of application, and soil water content,” Arid Land Research and Management, vol. 18, no. 4, pp. 385–395, 2004.
[21]  J. L. Stroehlein, P. R. Odgen, and B. Billy, “Time of fertilizer application on desert grasslands,” The Journal of Range Management, vol. 21, pp. 86–89, 1968.
[22]  J. L. Holechek, R. D. Pieper, and C. H. Herbel, Range Management: Principles and Practices, Regents/Prentice Hall, Englewood Cliffs, NJ, USA, 3rd edition, 1989.
[23]  J. F. Vallentine, Range Development and Improvement, Academic Press, New York, NY, USA, 3rd edition, 1989.
[24]  R. K. Strait, R. E. Zartman, R. E. Sosebee, and D. B. Wester, “Evaluating temperature constraints for municipal biosolids application to a desert grassland soil,” Texas Journal of Agriculture and Natural Resources, vol. 12, pp. 80–87, 1999.
[25]  United States Environmental Protection Agency, 2004 Edition of the Drinking Water Standards and Health Advisories, United States Environmental Protection Agency, Washington, DC, USA, 2004, EPA 822-R-04-005.
[26]  W. F. Jaynes and R. E. Zartman, “Origin of talc, iron phosphates, and other minerals in biosolids,” Soil Science Society of America Journal, vol. 69, no. 4, pp. 1047–1056, 2005.
[27]  M. Avila, Cattle grazing and biosolids in west Texas, Unpublished dissertation, Texas Tech University, Lubbock, Tex, USA, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133