The funicular cover of the Opuntia tomentosa seed limits imbibition; germination occurs only when the funicle is weakened or the funicular valve is removed. We investigated the role of fungi in funicular weakening and seed germination. Seeds that had been either buried in one of two sites or stored in the laboratory were germinated with and without a valve. Disinfected or nondisinfected seeds and their naked embryos were cultivated on agar or PDA. None of the 11 identified fungal genera grew on the disinfected control seeds or the embryos. The mycoflora present on disinfected and nondisinfected exhumed seeds suggest that the fungal colonization occurred in the soil and differed between the burial sites. Exhumed seeds with and without a valve germinated in high percentages, whereas only the control seeds without a valve germinated. Scanning electron micrographs showed that the hyphae penetrated, cracked, and eroded the funicular envelope of exhumed seeds. 1. Introduction The genus Opuntia has 181 species and numerous varieties [1]. In the subfamily Opuntioideae, a hard funicular envelope completely encloses the seed [2–4]. A study of the seed hardness of 400 Opuntia varieties growing in San Luis Potosi, Mexico, showed that pressures from 171 to 456?kgf were required to break these hard seeds [5]. In species such as Opuntia tomentosa [6–9] the hardness of the funiculus limits water uptake and thus germination of the immature embryo. To achieve germination, the funiculus of Opuntia tomentosa can be weakened in three ways: a valve may form naturally during burial [9], the funiculus may be cracked through exposure to high daytime temperatures [9], or the funiculus may be eroded or cracked by microorganisms [8]. The valve is a region located in the funicular flanks, close to the micropyle; this is the site where the radicle protrudes naturally. This valve may be artificially removed to enhance germination. Many studies relate the presence of microorganisms with deleterious effects on seeds [10]. However, the seed coat’s tannins or other growth-inhibiting substances may serve as a barrier against the penetration of the seed by these. Additionally, the seed coat, formed by testa and tegmen, protects the seed’s embryo from dehydration caused by temperature and humidity fluctuations [11, 12]. Therefore, most of the fungi observed to grow on intact, healthy seeds are saprophytic [13, 14] and even elicit seed germination, as in the impermeable and hard seeds of Albizia julibrissin and the achenes of Rosa corymbifera [15, 16]. It has been reported that in O.
References
[1]
E. F. Anderson, The Cactus Family, Timber Press, Portland, Ore, USA, 2001.
[2]
E. E. A. Archibald, “The development of the ovule and seeds of joined cactus (Opuntia aurantiaca),” South African Journal of Science, vol. 36, pp. 195–211, 1939.
[3]
E. M. Flores-Vindas, Algo sobre morfología y anatomía de semillas de cactaceae, Bachelor thesis, Universidad Autónoma de San Luís Potosí, San Luis Potosí, México, 1973.
[4]
L. H. Flores-Rentería, Estudio embriológico de opuntia tomentosa, salm-dyck var. salm-dyck (Cactaceae), Bachelor thesis, Universidad Autónoma de San Luís Potosí, San Luis Potosí, México, 2002.
[5]
A. Aguilar, Caracterización de las semillas de 403 variantes de nopal (Opuntia spp.) y sus implicaciones agroinduntriales, Bachelor thesis, Universidad Autónoma de San Luís Potosí, San Luis Potosí, México, 2003.
[6]
Y. Olvera-Carrillo, J. Márquez-Guzmán, V. L. Barradas, M. E. Sánchez-Coronado, and A. Orozco-Segovia, “Germination of the hard seed coated Opuntia tomentosa S. D., a cacti from the México valley,” Journal of Arid Environments, vol. 55, no. 1, pp. 29–42, 2003.
[7]
Y. Olvera-Carrillo, I. Méndez, M. E. Sánchez-Coronado et al., “Effect of environmental heterogeneity on field germination of Opuntia tomentosa (Cactaceae, Opuntioideae) seeds,” Journal of Arid Environments, vol. 73, no. 4-5, pp. 414–420, 2009.
[8]
Y. Olvera-Carrillo, J. Márquez-Guzmán, M. E. Sánchez-Coronado, V. L. Barradas, E. Rincón, and A. Orozco-Segovia, “Effect of burial on the germination of Opuntia tomentosa's (Cactaceae, Opuntioideae) seeds,” Journal of Arid Environments, vol. 73, no. 4-5, pp. 421–427, 2009.
[9]
A. Orozco-Segovia, J. Márquez-Guzmán, M. E. Sánchez-Coronado, A. Gamboa de Buen, J. M. Baskin, and C. C. Baskin, “Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae),” Annals of Botany, vol. 99, no. 4, pp. 581–592, 2007.
[10]
T. O. Crist and C. F. Friese, “The impact of fungi on soil seeds: implications for plants and granivores in a semiarid shrub-steppe,” Ecology, vol. 74, no. 8, pp. 2231–2239, 1993.
[11]
J. M. Baskin and C. C. Baskin, “Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles,” Seed Science Research, vol. 10, no. 4, pp. 409–413, 2000.
[12]
Y. Mohamed-Yasseen, S. A. Barringer, W. E. Splittstoesser, and S. Costanza, “The role of seed coats in seed viability,” The Botanical Review, vol. 60, no. 4, pp. 426–439, 1994.
[13]
R. Bosch and C. Vázquez-Yanes, “Estudio preliminar de la viabilidad natural de las semillas de Cecropia obtusifolia y de los factores ambientales que la modifican,” in Investigaciones Sobre la Regeneración de Selvas Altas en Veracruz, México, A. Gómez-Pompa and S. Del Amo, Eds., vol. 3, Alhambra Mexicana, DF, México, 1985.
[14]
R. J. Kremer, I. B. Hughes Jr., and R. J. Aldrich, “Examination of microorganisms and deterioration resistance mechanisms associated with Velvetleaf seed,” Agronomy Journal, vol. 76, pp. 745–749, 1984.
[15]
G. J. Gogue and E. R. Emino, “Seed coat scarification of Albizia julibrissin Durazz. By natural mechanisms,” Journal of the American Society of Horticultural Science, vol. 104, no. 3, pp. 421–423, 1979.
[16]
D. R. Morpeth and A. M. Hall, “Microbial enhancement of seed germination in Rosa corymbifera 'Laxa',” Seed Science Research, vol. 10, no. 4, pp. 489–494, 2000.
[17]
P. Delgado-Sánchez, M. A. Ortega-Amaro, A. A. Rodríguez-Hernández, J. F. Jiménez-Bremont, and J. Flores, “Further evidence from the effect of fungi on breaking Opuntia seed dormancy,” Plant Signaling and Behavior, vol. 5, no. 10, pp. 1229–1230, 2010.
[18]
P. Delgado-Sánchez, M. A. Ortega-Amaro, J. F. Jiménez-Bremont, and J. Flores, “Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae),” Plant Biology, vol. 13, no. 1, pp. 154–159, 2011.
[19]
H. Bravo-Hollis, Las Cactáceas de México, Universidad Nacional Autónoma de México, DF, México, 1978.
[20]
J. Rzedowski, “Vegetación del Pedregal de San ángel,” in Reserva Ecológica del Pedregal de San ángel. Ecología, Historia Natural y Manejo, A. Rojo, Ed., Universidad Nacional Autónoma de México, DF, México, 1994.
[21]
M. L. López-Curto, J. Márquez-Guzmán, and G. Murguía-Sánchez, Técnicas para el Estudio del Desarrollo en Angiospermas, Facultad de Ciencias, Universidad Nacional Autónoma de México, DF, México, 2005.
[22]
J. Zar, Biostatistical Analysis, Prentice Hall, New York, NY, USA, 1974.
[23]
S. D. Garret, “Ecological groups of soil fungi: a survey of substrate relations,” New Phytologist, vol. 50, no. 2, pp. 149–166, 1951.
[24]
N. J. Diz and J. Webster, Fungal Ecology, Chapman & Hall, Cambridge, UK, 1995.
[25]
K. H. Domsch and W. Gams, Compendium of Soil Fungi, Etching: IHW, 2007.
[26]
A. Arredondo, A. Rocha-Ruíz, and J. Flores, “Rompimiento de latencia en semillas de cinco especies de cactáceas del desierto chihuahuense,” Folleto Técnico 32, Campo Experimental San Luís, CIRNE-INIFAP, San Luis Potosí, México, 2007.
[27]
J. W. Dalling, A. S. Davis, B. J. Schutte, and A. E. Arnold, “Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community,” Journal of Ecology, vol. 99, no. 1, pp. 89–95, 2011.
[28]
P. Widden and D. Parkinson, “The effects of a forest fire on soil microfungi,” Soil Biology and Biochemistry, vol. 7, no. 2, pp. 125–138, 1975.