全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing

DOI: 10.1155/2011/561975

Full-Text   Cite this paper   Add to My Lib

Abstract:

Specific endospore formers have become important contaminants in industrial food processing. The direct or indirect soil route of contamination or dispersal is the start of events or processes in the agrofood chain that eventually leads to important problems or concerns for food safety and/or quality. Three important food sectors are discussed in this paper. In the dairy sector, Bacillus cereus, the most important pathogen or spoilage organism in this sector, and Clostridium tyrobutyricum, the most important spoiler in certain cheeses, both contaminate pasteurized milk through the faecal and/or (at least for B. cereus) the direct soil route. In the fruit juice industry, Alicyclobacillus acidoterrestris, present on raw fruits, has become a major quality-target organism. In the ready-to-eat food sector, B. cereus and other aerobic endospore formers are introduced via vegetables, fruits, or herbs and spices, while anaerobic spore formers like nonproteolytic Clostridium botulinum and Clostridium estertheticum pose safety and spoilage risks in chilled packaged foods, respectively. 1. Introduction There is a clear association between soil-borne endospore forming bacteria and food contamination. The spore formers implicated belong both to the strictly anaerobic (“the clostridia”) and to the aerobic (the genus Bacillus and related genera) phylogenetic groups of microorganisms. Several reasons can be proposed to explain this phenomenon, and most are related to some general characteristics of the spores, which are formed at the end of the growth phase within the vegetative mother cell acting as sporangium (hence, endospores) and released in the environment as survival structures (Figure 1). These are (1) their ubiquitous presence in soil, (2) their resistance to heat in common industrial processes such as pasteurization, (3) the adhesive characters of particular spores that facilitate their attachment to processing equipment, and (4) their ability to germinate and grow in favorable conditions [1]. Several spore formers either need or tolerate specific conditions for germination and growth, which all can occur in food even in combination, such as low or high temperatures and anaerobic or acidophilic conditions. The concerted characteristics of spores and vegetative cells of particular soil-borne species make them potential sole surviving and growing contaminants in specific industrially processed foods. Some of them seem even to be of more recent concern, which might be the result of increasing tolerance, adaptation, or resistance of spores or vegetative cells of

References

[1]  A. Andersson, U. Ronner, and P. E. Granum, “What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?” International Journal of Food Microbiology, vol. 28, no. 2, pp. 145–155, 1995.
[2]  S. Rodgers, “Long shelf life cook-chill technologies: food safety risks and solutions,” Food Australia, vol. 55, no. 3, pp. 80–83, 2003.
[3]  P. Scheldeman, L. Herman, S. Foster, and M. Heyndrickx, “Bacillus sporothermodurans and other highly heat-resistant spore formers in milk,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 542–555, 2006.
[4]  M. H. Guinebretière, F. L. Thompson, A. Sorokin et al., “Ecological diversification in the Bacillus cereus group,” Environmental Microbiology, vol. 10, no. 4, pp. 851–865, 2008.
[5]  S. Vilain, Y. Luo, M. B. Hildreth, and V. S. Br?zel, “Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 4970–4977, 2006.
[6]  H. K?nig, “Bacillus species in the intestine of termites and other soil invertebrates,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 620–627, 2006.
[7]  G. B. Jensen, B. M. Hansen, J. Eilenberg, and J. Mahillon, “The hidden lifestyles of Bacillus cereus and relatives,” Environmental Microbiology, vol. 5, no. 8, pp. 631–640, 2003.
[8]  F. Carlin, J. Brillard, V. Broussolle et al., “Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment,” Food Research International, vol. 43, no. 7, pp. 1885–1894, 2010.
[9]  M. M. M. Vissers, M. C. te Giffel, F. Driehuis, P. De Jong, and J. M. G. Lankveld, “Minimizing the level of Bacillus cereus spores in farm tank milk,” Journal of Dairy Science, vol. 90, no. 7, pp. 3286–3293, 2007.
[10]  M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Minimizing the level of butyric acid bacteria spores in farm tank milk,” Journal of Dairy Science, vol. 90, no. 7, pp. 3278–3285, 2007.
[11]  M. Nevas, M. Lindstr?m, A. H?rman, R. Keto-Timonen, and H. Korkeala, “Contamination routes of Clostridium botulinum in the honey production environment,” Environmental Microbiology, vol. 8, no. 6, pp. 1085–1094, 2006.
[12]  C. Lúquez, M. I. Bianco, L. I. T. de Jong et al., “Distribution of botulinum toxin-producing clostridia in soils of Argentina,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 4137–4139, 2005.
[13]  J. Li, S. Sayeed, and B. A. McClane, “Prevalence of enterotoxigenic Clostridium perfringens isolates in Pittsburgh (Pennsylvania) area soils and home kitchens,” Applied and Environmental Microbiology, vol. 73, no. 22, pp. 7218–7224, 2007.
[14]  G. Moschonas, D. J. Bolton, J. J. Sheridan, and D. A. McDowell, “Isolation and sources of blown pack spoilage clostridia in beef abattoirs,” Journal of Applied Microbiology, vol. 107, no. 2, pp. 616–624, 2009.
[15]  M. C. Julien, P. Dion, C. Lafrenière, H. Antoun, and P. Drouin, “Sources of clostridia in raw milk on farms,” Applied and Environmental Microbiology, vol. 74, no. 20, pp. 6348–6357, 2008.
[16]  X. Y. Wu, M. Walker, B. Vanselow, R. L. Chao, and J. Chin, “Characterization of mesophilic Bacilli in faeces of feedlot cattle,” Journal of Applied Microbiology, vol. 102, no. 3, pp. 872–879, 2007.
[17]  M. Magnusson, A. Christiansson, and B. Svensson, “Bacillus cereus spores during housing of dairy cows: factors affecting contamination of raw milk,” Journal of Dairy Science, vol. 90, no. 6, pp. 2745–2754, 2007.
[18]  P. Scheldeman, A. Pil, L. Herman, P. De Vos, and M. Heyndrickx, “Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1480–1494, 2005.
[19]  L. P. Stenfors Arnesen, A. Fagerlund, and P. E. Granum, “From soil to gut: Bacillus cereus and its food poisoning toxins,” FEMS Microbiology Reviews, vol. 32, no. 4, pp. 579–606, 2008.
[20]  J. Bassett and P. McClure, “A risk assessment approach for fresh fruits,” Journal of Applied Microbiology, vol. 104, no. 4, pp. 925–943, 2008.
[21]  K. Frederiksen, H. Rosenquist, K. J?rgensen, and A. Wilcks, “Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3435–3440, 2006.
[22]  Y. P. de Vries, Bacillus cereus spore formation, structure, and germination, Ph.D. thesis, 2011.
[23]  J. G. E. Wijman, P. P. L. A. de Leeuw, R. Moezelaar, M. H. Zwietering, and T. Abee, “Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion,” Applied and Environmental Microbiology, vol. 73, no. 5, pp. 1481–1488, 2007.
[24]  J. H. Ryu and L. R. Beuchat, “Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer,” Journal of Food Protection, vol. 68, no. 12, pp. 2614–2622, 2005.
[25]  F. Carlin, M. Fricker, A. Pielaat et al., “Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group,” International Journal of Food Microbiology, vol. 109, no. 1-2, pp. 132–138, 2006.
[26]  EFSA (European Food Safety Authority), “Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus sp. in foodstuffs,” EFSA Journal, vol. 175, pp. 1–49, 2004.
[27]  M. Heyndrickx, S. Marchand, V. De Jonghe, K. Smet, K. Coudijzer, and J. De Block, “Understanding and preventing consumer milk microbial spoilage and chemical deterioration,” in Improving the Safety and Quality of Milk, M. W. Griffiths, Ed., vol. 2 of Improving Quality in Milk Products, pp. 97–135, Woodhead Publishing Limited, Cambridge, UK, 2010.
[28]  B. Svensson, A. Monthán, M. H. Guinebretière, C. Nguyen-Thé, and A. Christiansson, “Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain,” International Dairy Journal, vol. 17, no. 10, pp. 1201–1208, 2007.
[29]  A. Coorevits, V. De Jonghe, J. Vandroemme et al., “Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms,” Systematic and Applied Microbiology, vol. 31, no. 2, pp. 126–140, 2008.
[30]  M. C. te Giffel, A. Wagendorp, A. Herrewegh, and F. Driehuis, “Bacterial spores in silage and raw milk,” Antonie van Leeuwenhoek, vol. 81, no. 1–4, pp. 625–630, 2002.
[31]  M. M. M. Vissers, M. C. te Giffel, F. Driehuis, P. De Jong, and J. M. G. Lankveld, “Predictive modeling of Bacillus cereus spores in farm tank milk during grazing and housing periods,” Journal of Dairy Science, vol. 90, no. 1, pp. 281–292, 2007.
[32]  A. Christiansson, J. Bertilsson, and B. Svensson, “Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period,” Journal of Dairy Science, vol. 82, no. 2, pp. 305–314, 1999.
[33]  C. L. Little and I. A. Gillespie, “Prepared salads and public health,” Journal of Applied Microbiology, vol. 105, no. 6, pp. 1729–1743, 2008.
[34]  T. Lund, M. L. De Buyser, and P. E. Granum, “A new cytotoxin from Bacillus cereus that may cause necrotic enteritis,” Molecular Microbiology, vol. 38, no. 2, pp. 254–261, 2000.
[35]  F. Carlin, M. H. Guinebretiere, C. Choma, R. Pasqualini, A. Braconnier, and C. Nguyen-The, “Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees,” Food Microbiology, vol. 17, no. 2, pp. 153–165, 2000.
[36]  M. H. Guinebretière and C. Nguyen-The, “Sources of Bacillus cereus contamination in a pasteurized zucchini purée processing line, differentiated by two PCR-based methods,” FEMS Microbiology Ecology, vol. 43, no. 2, pp. 207–215, 2003.
[37]  A. L. Afchain, F. Carlin, C. Nguyen-The, and I. Albert, “Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods,” International Journal of Food Microbiology, vol. 128, no. 1, pp. 165–173, 2008.
[38]  N. Jensen, “Alicyclobacillus—a new challenge for the food industry,” Food Australia, vol. 51, no. 1-2, pp. 33–36, 1999.
[39]  K. Goto, H. Matsubara, K. Mochida et al., “Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 1, pp. 109–113, 2002.
[40]  K. Goto, K. Mochida, M. Asahara, M. Suzuki, H. Kasai, and A. Yokota, “Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 5, pp. 1537–1544, 2003.
[41]  H. Matsubara, K. Goto, T. Matsumura et al., “Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1681–1685, 2002.
[42]  F. M. Silva, P. Gibbs, M. C. Vieira, and C. L. M. Silva, “Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes,” International Journal of Food Microbiology, vol. 51, no. 2-3, pp. 95–103, 1999.
[43]  N. Jensen and F. B. Whitfield, “Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice,” Letters in Applied Microbiology, vol. 36, no. 1, pp. 9–14, 2003.
[44]  M. Walker and C. A. Phillips, “Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry?” International Journal of Food Science and Technology, vol. 43, no. 2, pp. 250–260, 2008.
[45]  I. C. McKnight, M. N. U. Eiroa, A. S. Sant'Ana, and P. R. Massaguer, “Alicyclobacillus acidoterrestris in pasteurized exotic Brazilian fruit juices: isolation, genotypic characterization and heat resistance,” Food Microbiology, vol. 27, no. 8, pp. 1016–1022, 2010.
[46]  M. E. Parish and R. M. Goodrich, “Recovery of presumptive Alicyclobacillus strains from orange fruit surfaces,” Journal of Food Protection, vol. 68, no. 10, pp. 2196–2200, 2005.
[47]  S. Mcintyre, J. Y. Ikawa, N. Parkinson, J. Haglund, and J. Lee, “Characteristics of an acidophilic Bacillus strain isolated from shelf-stable juices,” Journal of Food Protection, vol. 58, no. 3, pp. 319–321, 1995.
[48]  M. Heyndrickx and P. Scheldeman, “Bacilli associated with spoilage in dairy and other food products,” in Applications and Systematics of Bacillus and Relatives, R. Berkely, M. Heyndrickx, N. A. Logan, and P. De Vos, Eds., pp. 64–82, Blackwell Science, Oxford, UK, 2002.
[49]  W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa,” Extremophiles, vol. 12, no. 1, pp. 159–163, 2008.
[50]  K. Goto, A. Nishibori, Y. Wasada, K. Furuhata, M. Fukuyama, and M. Hara, “Identification of thermo-acidophilic bacteria isolated from the soil of several Japanese fruit orchards,” Letters in Applied Microbiology, vol. 46, no. 3, pp. 289–294, 2008.
[51]  W. H. Groenewald, P. A. Gouws, and R. C. Witthuhn, “Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa,” Food Microbiology, vol. 26, no. 1, pp. 71–76, 2009.
[52]  G. W. Gould, “History of science—spores: Lewis B Perry Memorial Lecture 2005,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 507–513, 2006.
[53]  J. D. Kim, D. W. Lee, K. S. Lee, C. H. Choi, and K. H. Kang, “Distribution and antimicrobial susceptibility of Clostridium species in soil contaminated with domestic livestock feces of Korea,” Journal of Microbiology and Biotechnology, vol. 14, no. 2, pp. 401–410, 2004.
[54]  M. Del Mar Gamboa, E. Rodríguez, and P. Vargas, “Diversity of mesophilic clostridia in Costa Rican soils,” Anaerobe, vol. 11, no. 6, pp. 322–326, 2005.
[55]  J. D. Kim, D. W. Lee, K. S. Lee, C. H. Choi, and K. H. Kang, “Distribution and antimicrobial susceptibility of Clostridium species in soil contaminated with domestic livestock feces of Korea,” Journal of Microbiology and Biotechnology, vol. 14, no. 2, pp. 401–410, 2004.
[56]  M. W. Peck, K. E. Goodburn, R. P. Betts, and S. C. Stringer, “Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled,” Trends in Food Science and Technology, vol. 19, no. 4, pp. 207–216, 2008.
[57]  M. Lindstr?m, K. Kiviniemi, and H. Korkeala, “Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing,” International Journal of Food Microbiology, vol. 108, no. 1, pp. 92–104, 2006.
[58]  K. H. Adam, S. H. Flint, and G. Brightwell, “Psychrophilic and psychrotrophic clostridia: sporulation and germination processes and their role in the spoilage of chilled, vacuum-packaged beef, lamb and venison,” International Journal of Food Science and Technology, vol. 45, no. 8, pp. 1539–1544, 2010.
[59]  D. M. Broda, R. G. Bell, J. A. Boerema, and D. R. Musgrave, “The abattoir source of culturable psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled venison,” Journal of Applied Microbiology, vol. 93, no. 5, pp. 817–824, 2002.
[60]  J. A. Boerema, D. M. Broda, and R. G. Bell, “Abattoir sources of psychrophilic clostridia causing blown pack spoilage of vacuum-packed chilled meats determined by culture-based and molecular detection procedures,” Letters in Applied Microbiology, vol. 36, no. 6, pp. 406–411, 2003.
[61]  R. M. Clemens, K. H. Adam, and G. Brightwell, “Contamination levels of Clostridium estertheticum spores that result in gaseous spoilage of vacuum-packaged chilled beef and lamb meat,” Letters in Applied Microbiology, vol. 50, no. 6, pp. 591–596, 2010.
[62]  M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration,” Journal of Dairy Science, vol. 90, no. 2, pp. 928–936, 2007.
[63]  M. M. M. Vissers, F. Driehuis, M. C. te Giffel, P. De Jong, and J. M. G. Lankveld, “Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria,” Journal of Dairy Science, vol. 89, no. 3, pp. 850–858, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133