全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures

DOI: 10.1155/2012/402420

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM). The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables. 1. Introduction Generalized fuzzy model (GFM) [1–3] is the backbone of this work that employs two norms for computing the strength of a rule: the multiplicative T-norm operator for determining the strength of a rule [4–6] and the additive S-norm operator for combining the outputs of all the rules. The effect of input fuzzy sets is taken into the defuzzified output in the form of rule strengths or weights. Gan et al. [7] have simplified the formulation of GFM by setting both the inputs and the output to be jointly Gaussian and proved that the input-output relation is as an expectation using the Bayesian framework. On simplification, this turns out to be the coveted Gaussian mixture model (GMM), which is linked by an additive function between the inputs and the output. The GMM, also known as cluster-weighted modeling (CWM) [8–12], is advocated by many researchers as means of statistical modeling of input-output systems [10, 13–15]. After the establishment of equivalence between GMM and GFM in [7], the difficult-to-compute index of fuzziness of GFM has become easy-to-compute prior probability [16–23] in GMM. Further simplification of GFM will be explored when it is converted into nonadditive case. The use of GMM in GFM has provided a generalized framework for additive fuzzy systems. A few

References

[1]  M. F. Azeem, M. Hanmandlu, and N. Ahmad, “Structure identification of generalized adaptive neuro-fuzzy inference systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 666–681, 2003.
[2]  M. F. Azeem, M. Hanmandlu, and N. Ahmad, “Generalization of adaptive neuro-fuzzy inference systems,” IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1332–1346, 2000.
[3]  N. K. Verma and M. Hanmandlu, “Adaptive non-additive generalized fuzzy systems,” Applied Soft Computing Journal, vol. 10, no. 3, pp. 820–831, 2010.
[4]  T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.
[5]  E. H. Mamdani and S. Assilian, “Experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.
[6]  J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 156–159, 1993.
[7]  M.-T. Gan, M. Hanmandlu, and A. H. Tan, “From a gaussian mixture model to additive fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 3, pp. 303–316, 2005.
[8]  R. L. Flood and E. R. Carson, Dealing with Complexity: An Introduction to the Theory and Application of Systems Science, Plenum, New York, NY, USA, 2nd. edition, 1993.
[9]  G. J. McLachlan, “Cluster analysis and related techniques in medical research,” Statistical Methods in Medical Research, vol. 1, no. 1, pp. 27–48, 1992.
[10]  N. A. Gershenfeld, The Nature of Mathematical Modeling, Cambridge University Press, London, UK, 1999.
[11]  B. S. Everitt, Cluster Analysis, Edward Arnold, London, UK, 3rd. edition, 1993.
[12]  K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo, “Model-based clustering and data transformations for gene expression data,” Bioinformatics, vol. 17, no. 10, pp. 977–987, 2001.
[13]  D. V. Prokhorov, L. A. Feldkamp, and T. M. Feldkamp, “A new approach to cluster-weighted modeling,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN'01), vol. 3, pp. 1669–1674, July 2001.
[14]  L. A. Feldkamp, D. V. Prokhorov, and T. M. Feldkamp, “Cluster-weighted modeling with multiclusters,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN'01), vol. 3, pp. 1710–1714, July 2001.
[15]  B. Everitt, D. J. Hand, et al., Finite Mixture Distributions, Chapman and Hall, London, UK, 1981.
[16]  J. H. Wolfe, “A Monte-Carlo study of the sampling distribution of the likelihood ratio for mixtures of multinormal distributions,” Technical Bulletin STB 72-2, US Navel Personnel and Training Research Activity, San Diego, Calif, USA, 1971.
[17]  N. R. Mendell, H. C. Thode, and S. J. Finch, “The likelihood ratio test for the two-component normal mixture problem: power and sample size analysis,” Biometrics, vol. 47, no. 3, pp. 1143–1148, 1991.
[18]  G. J. McLachlan, “On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture,” Journal of the Royal Statistical Society, Series C, vol. 36, no. 3, pp. 318–324, 1987.
[19]  G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, Wiley-Interscience, New York, NY, USA, 1992.
[20]  R. E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics for Engineers and Scientists, Prentice Hall, 6th. edition, 1998.
[21]  K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, 1979.
[22]  W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery , Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, London, UK, 2nd. edition, 1993.
[23]  M. Aitkin, D. Anderson, and J. Hinde, “Statistical modelling of data on teaching styles,” Journal of the Royal Statistical Society A, vol. 144, no. 4, pp. 419–461, 1981.
[24]  B. Kosko, Fuzzy Engineering, Prentice Hall, London, UK, 1997.
[25]  L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Transactions on Systems, Man and Cybernetics, vol. 22, no. 6, pp. 1414–1427, 1992.
[26]  J. Abonyi, R. Babu?ka, and F. Szeifert, “Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 32, no. 5, pp. 612–621, 2002.
[27]  M. Sugeno and T. Yasukawa, “Fuzzy-logic-based approach to qualitative modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 7–31, 1993.
[28]  M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15–33, 1988.
[29]  M. Hanmandlu, N. K. Verma, N. Ahmad, and S. Vasikarla, “Cluster-weighted modeling as a basis for non-additive GFM,” in Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, pp. 652–657, Reno, Nev, USA, May 2005.
[30]  J. R. Chang, G. H. Tzeng, C. T. Hung, and H. H. Lin, “Non-additive fuzzy regression applied to establish flexible pavement present serviceability index,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1020–1025, May 2003.
[31]  N. K. Verma and M. Hanmandlu, “From a gaussian mixture model to nonadditive fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 5, pp. 809–827, 2007.
[32]  P. Miranda and E. F. Combarro, “On the structure of some families of fuzzy measures,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1068–1081, 2007.
[33]  R. R. Yager, “Uncertainty representation using fuzzy measures,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 32, no. 1, pp. 13–20, 2002.
[34]  K. Le, “Fuzzy measures of aggregated evidences,” in Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS '96), pp. 572–576, Berkeley, Calif, USA, June 1996.
[35]  Y. Narukawa, T. Murofushi, and M. Sugeno, “Space of fuzzy measures and convergence,” Fuzzy Sets and Systems, vol. 138, no. 3, pp. 497–506, 2003.
[36]  J.-H. Chiang, “Choquet fuzzy integral-based hierarchical networks for decision analysis,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 1, pp. 63–71, 1999.
[37]  Y. Narukawa and V. Torra, “Fuzzy measures and integrals in evaluation of strategies,” Information Sciences, vol. 177, no. 21, pp. 4686–4695, 2007.
[38]  Z. Q. Liu, L. T. Bruton, J. C. Bezdek et al., “Dynamic image sequence analysis using fuzzy measures,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 31, no. 4, pp. 557–572, 2001.
[39]  M. Grabisch, T. Murofushi, and M. Sugeno, Fuzzy Measures and Integrals: Theory and Applications, Physica, Heidelberg, Germany, 2000.
[40]  M. Sugeno, “Fuzzy measures and fuzzy integrals: a survey,” in Fuzzy Automata and Decision Processes, M. M. Gupta, G. N. Saridis, and B. R. Gaines, Eds., pp. 89–102, North-Holland, New York, NY, USA, 1977.
[41]  T. Murofushi and M. Sugeno, “Some quantities represented by the choquet integral,” Fuzzy Sets and Systems, vol. 56, no. 2, pp. 229–235, 1993.
[42]  L. M. De Campos, M. T. Lamata, and S. Moral, “A unified approach to define fuzzy integrals,” Fuzzy Sets and Systems, vol. 39, no. 1, pp. 75–90, 1991.
[43]  M. Friedman, M. Ma, and A. Kandel, “Numerical methods for calculating the fuzzy integral,” Fuzzy Sets and Systems, vol. 83, no. 1, pp. 57–62, 1996.
[44]  M. Sugeno and T. Murofushi, “Pseudo-additive measures and integrals,” Journal of Mathematical Analysis and Applications, vol. 122, no. 1, pp. 197–222, 1987.
[45]  Z. Wang, G. J. Klir, and W. Wang, “Monotone set functions defined by choquet integral,” Fuzzy Sets and Systems, vol. 81, no. 2, pp. 241–250, 1996.
[46]  M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.
[47]  P. D. Gader, J. M. Keller, R. Krishnapuram, J. H. Chiang, and M. A. Mohamed, “Neural and fuzzy methods in handwriting recognition,” Computer, vol. 30, no. 2, pp. 79–86, 1997.
[48]  P. D. Gader, J. M. Keller, and B. N. Nelson, “Recognition technology for the detection of buried land mines,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 1, pp. 31–43, 2001.
[49]  J. M. Keller, P. Gader, H. Tahani, J. H. Chiang, and M. Mohamed, “Advances in fuzzy integration for pattern recognition,” Fuzzy Sets and Systems, vol. 65, no. 2-3, pp. 273–283, 1994.
[50]  W. J. Krzanowski and F. H. C. Marriott, Multivariate Analysis Part 2: Classification, Covariance Structures and Repeated Measurements, Edward Arnold, London, UK, 1995.
[51]  A. K. Hocao?lu and P. Gader, “Comments on "choquet fuzzy integral-based hierarchical networks for decision analysis",” IEEE Transactions on Fuzzy Systems, vol. 7, no. 6, p. 767, 1999.
[52]  M. A. Mohamed and W. Xiao, “Q-measures: an efficient extension of the sugeno λ-measure,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 419–426, 2003.
[53]  M. F. Azeem, M. Hanmandlu, and N. Ahmad, “Parameter determination for a generalized fuzzy model,” Soft Computing, vol. 9, no. 3, pp. 211–221, 2005.
[54]  A. R. Barron, “Predicted squared error: a criterion for automatic model selection,” in Self-Organizing Methods in Modeling, S. J. Farlow, Ed., vol. 54, pp. 87–103, Marcel Dekker, New York, NY, USA, 1984.
[55]  E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-day, San Francisco, Calif, USA, 1970.
[56]  M. F. Azeem, M. Hanmandlu, and N. Ahmad, “A new criteria for input variable identification of dynamical systems,” in Proceedings of the IEEE Region 10th International Conference on Global Connectivity in Energy, Computer, Communication and Control (TENCON '98), vol. 1, pp. 230–233, New Delhi, India, 1998.
[57]  A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38, 1977.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133