Multiobjective optimization problem (MOP) is an important and challenging topic in the fields of industrial design and scientific research. Multi-objective evolutionary algorithm (MOEA) has proved to be one of the most efficient algorithms solving the multi-objective optimization. In this paper, we propose an entropy-based multi-objective evolutionary algorithm with an enhanced elite mechanism (E-MOEA), which improves the convergence and diversity of solution set in MOPs effectively. In this algorithm, an enhanced elite mechanism is applied to guide the direction of the evolution of the population. Specifically, it accelerates the population to approach the true Pareto front at the early stage of the evolution process. A strategy based on entropy is used to maintain the diversity of population when the population is near to the Pareto front. The proposed algorithm is executed on widely used test problems, and the simulated results show that the algorithm has better or comparative performances in convergence and diversity of solutions compared with two state-of-the-art evolutionary algorithms: NSGA-II, SPEA2 and the MOSADE. 1. Introduction Optimization problems exist in all kinds of engineering and scientific areas. When there is more than one objective in an optimization problem, it is called a multiobjective optimization problem (MOP). Since these objectives are usually in conflict with each other, the goal of solving a MOP is to find a set of compromise solutions regarding all objectives rather than a best one as in single-objective optimization problems. The solutions of MOP, also called as the Pareto-optimal solutions, are optimal in the sense that there exist no other feasible solutions which would decrease some criteria without causing the increase of at least one other criterion. Evolutionary algorithm (EA) is an optimization algorithm based on the evolution of a population. As it can search for multiple solutions in parallel, it has gained great attention from researchers. In recent years, many excellent EAs [1–4] have been proposed to solve the MOPs efficiently and MOEA has been recognized as one of the best methods to solve the MOPs. Generally, there are two performance measures in evaluating the Pareto-optimal solutions obtained by MOEA. One is the convergence measurement, which evaluates the adjacent degree between the Pareto solutions and the true optimal front. Another one is the diversity measurement, which evaluates the distribution of solutions in the objective space. In order to achieve good performance, many excellent strategies and
References
[1]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[2]
E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization,” in Evolutionary Methods for Design, Optimisation and Control, vol. 3242, pp. 95–100, CIMNE, Barcelona, Spain, 2002.
[3]
Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.
[4]
B. Y. Qu and P. N. Suganthan, “Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection,” Information Sciences, vol. 180, no. 17, pp. 317–318, 2010.
[5]
J. Knowles and D. Corne, “The pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 98–105, IEEE Press, Piscataway, NJ, USA, September 1999.
[6]
E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000.
[7]
K. Deb, M. Mohan, and S. Mishra, “Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions,” Evolutionary Computation, vol. 13, no. 4, pp. 501–525, 2005.
[8]
M. Li, J. Zheng, and G. Xiao, “An efficient multi-objective evolutionary algorithm based on minimum spanning tree,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '08), pp. 617–624, IEEE Computer Society, Hong Kong, China, June 2008.
[9]
T. Hanne, “A multiobjective evolutionary algorithm for approximating the efficient set,” European Journal of Operational Research, vol. 176, no. 3, pp. 1723–1734, 2007.
[10]
C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948.
[11]
A. Farhang-Mehr and S. Azarm, “Diversity assessment of Pareto optimal solution sets: an entropy approach,” in Proceedings of the of the Congress on Evolutionary Computation, pp. 723–728, 2002.
[12]
S. Gunawan, A. Farhang-Mehr, and S. Azarm, Multi-Level Multi-Objective Genetic Algorithm Using Entropy to Preserve Diversity, Springer, Berlin, Germany, 2003.
[13]
Y. N. Wang, L. H. Wu, and X. F. Yuan, “Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure,” Soft Computing, vol. 14, no. 3, pp. 193–209, 2010.
[14]
G. Rudolp, “Evolutionary search under paritialy ordered sets,” Tech. Rep. CI-67-99, Department of Computer Science/LS11, University ofDortmund, Dortmund, Germany, 1999.
[15]
C. E. Shannon, “A Mathematical theory of communication,” BellSystem Technical Journal, vol. 27, pp. 379-423 and 623–656, 1948.
[16]
K. Deb, L. Thiele, M. Laumanns, et al., “Scalable test problems forevoltionary multi-objective optimization,” Tech. Rep., ETH Zurich, Zurich, Switzerland, 2001.
[17]
D. A. van Veldhuizen and G. B. Lamont, “Evolutionary computation and convergence to a pareto front,” in Proceedings of the Late Breaking Papers at the Genetic Programming Conference, J. R. Koza, Ed., pp. 221–228, 1998.
[18]
J. R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization [M.S. thesis], Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.
[19]
A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '06), pp. 3234–3240, July 2006.
[20]
D. Kalyanmoy and K. Amarendra, “Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems,” Complex Systems, vol. 9, no. 6, pp. 431–454, 1995.
[21]
K. Deb and M. A. Goyal, “Combined genetic adaptive search(GeneAs)for engineering design,” Computer Science and Informatics, vol. 26, no. 4, pp. 30–45, 1996.
[22]
K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test problems,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '02), D. B. Fogel, Ed., pp. 825–830, IEEE Service Center, Piscataway, NJ, USA, 2002.