全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2005 

大气甲烷的冰芯记录

, PP. 360-367

Keywords: 冰芯,甲烷记录,气候变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

冰芯包裹气体的提取分析提供了历史时期大气CH4含量变化最直接的信息.“三极(南极、格陵兰及青藏高原)”冰芯的大气甲烷记录的恢复,刻画了自然变化时期大气CH4含量的详细变化情景及不同纬度间的变化差异,并以此可进一步分析大气CH4含量变化与气候变化的关系以及陆地CH4排放随时间的变化特征.冰芯研究揭示,工业革命以来大气CH4含量的急剧增长及其现阶段的大气含量是过去几十万年来任何气候变化时期从未发生过的.

References

[1]  Raynaud D, Barnola J M, Chappellaz J, et al. The ice record of greenhouse gases: a view in the context of future changes. Quaternary Science Reviews, 2000, 19: 9-17.
[2]  EPICA Community Members. Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429: 623-628.
[3]  Patenaude R W. Deep core drilling in ice, Bad Station, Antarctica. US Army IPRE (CRREL), Technical Report 60, 1959.
[4]  Ragle R H. Deep core drilling in the Ross Ice Shelf, Little America V, Antarctica. US Army SIPRE (CREEL), Technical Report No.70, 1960.
[5]  Thompson L G, Yao T, Mosley-Thompson E. A high-resolution millennial record of the south Asian monsoon from Himalayan Ice Cores. Science, 2000, 289:1 916-1 919.
[6]  Cu Baiqing, Yao Tandong. A study on the air-bubble formation process at altitude of 7 100 m a.s.l. in the Dasuopu Glacier. Journal of Glaciology and Geocrgology, 1999, 21(2): 120-124. [徐柏青, 姚檀栋. 达索普冰川海拔7 100 m处气泡封闭过程研究. 冰川冻土, 1999, 21(2): 120-124.
[7]  Xu Baiqing, Yao Tandong. Dasuopu ice core record of atmospheric methane over the past 2000 years. Science in China (Series D), 2001, 44(8): 689-696.
[8]  Yao Tandong, Duan Keqin, Xu Baiqin, et al. Temperature and methane records over last 2 ka in Dasuopu ice core. Science in China (Series D), 2002, 45(12):1 068-1 073.
[9]  Imbrie J. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovich forcing. Paleoceanography, 1992, 7: 701-738.
[10]  Petit J, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429-436.
[11]  Berger A, Loutre M F, Gallee H. Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200kyr. Climate Dynamics, 1998, 14: 615-629.
[12]  Weaver A J, Eby M, Fanning A F, et al. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature, 1998, 394: 847-853.
[13]  Chappellaz J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over the past 160,000 years. Nature, 1990, 345: 127-131.
[14]  Chappellaz J, Fung I Y, Thompson A M. The atmospheric CH4 increase since the Last Glacial Maximum. 1. Interaction with oxidants. Tellus, 1993, 45B(3): 242-257.
[15]  Chappellaz J, Blunier T, Kints S, et al. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophy. Res., 1997, 102(D13):15 987-15 997.
[16]  Chappellaz J, Blunier T, Raynaud D, et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 ka BP. Nature, 1993, 366: 443-445.
[17]  Raynaud D, Jouzel J, Barnola J M, et al. The ice core record of greenhouse gases. Science, 1993, 259: 926-934.
[18]  Lorius C, Jouzel J, Raynaud D, et al. Greenhouse warming, climate sensitivity and ice core data. Nature, 1990, 347: 139-145.
[19]  Raynaud D, Chappellaz J, Barnola J M, et al. Climatic and CH4 cycle implications of glacial- interglacial CH4 change in the Vostok ice core. Nature, 1988, 333: 655-657.
[20]  Blunier T, Chappellae J, Schwander J, et al. Atmospheric methane, record from a Greenland ice core over the last 1000 years. Geophys. Res. Lett., 1993, 20(20):2 219-2 222.
[21]  Blunier T, Chappellaz J, Schwnader J, et al. Variations in atmospheric methane concentration during the Holocene epoch. Nature, 1995, 374: 46-49.
[22]  Dlugokencky E J, Steele L P, Lang P M, et al. The growth rate and distribution of atmospheric methane. J. Geophys. Res., 1994, 99:17 021-17 043.
[23]  Brook E J, Harder S, Severinghaus J. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles, 2000, 14(2): 559-572.
[24]  Rasmusen R A, Khalil M A K. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J. Geophys. Res., 1984, 89(D7):11 599-11 605.
[25]  Craig H, Chou C C. Methane: The record in polar ice cores. Geophys. Res. Lett., 1982, 9:1 221-1 224.
[26]  Etheridge D M, Pearman G I, Fraser P J. Changes in tropospheric methane between 1841 and 1978 from high accumulation-rate Antarctic ice core. Tellus, 1992, 44B: 181-194.
[27]  Etheridge D M, Steel L P, Francey R J, et al. Atmospheric methane between 1000 A.D. and prensent: evidence of anthropogenic emissions and climatic variability. J. Geophy. Res., 1998, 103(D13):15 979-15 993.
[28]  Stauffer B, Fischer G, Neftel A, et al. Increase of atmospheric methane recorded in Antarctic ice core. Science, 1985, 229:1 386-1 388.
[29]  Steele L P, Dlugokencky E J, Lang P M, et al. Slowing down of global accumulation of atmospheric methane during the 1980s. Nature, 1992, 358: 313-316.
[30]  Fung I, John J, Lerner J, et al. Three dimensional model synthesis of the global methane cycle. J. Geophys. Res., 1991, 96:13 033-13 065.
[31]  Dallenbach A, Blunier T, Fluckiger J, et al. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett., 2000, 27(7):1 005-1 008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133