全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究

DOI: 10.7522/j.issn.1000-0240.2013.0001, PP. 1-9

Keywords: 活动层,气候变暖,有机质含量,碳储量估算

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探索在全球气候变化背景下多年冻土区碳储量现状,通过野外实地勘探和室内实验,对黑河上游俄博岭多年冻土区地貌特征及不同海拔活动层内的碳储量进行考察和估算.结果表明黑河上游俄博岭冰缘现象显著,土壤季节冻融过程活跃,且活动层中碳储量丰富.在研究区约2.5×106m2的范围内,活动层平均厚度约为1.1m,活动层土壤有机质平均含量约为72.1%,碳储量估算约为1.57MtC.活动层不同深度处有机质含量呈现不同的变化规律.随着活动层深度增加,土壤有机质的含量逐渐降低,在多年冻土上限附近有机质含量较高.另外,活动层有机质含量随着海拔和土壤含水量的不同而变化,同时多年冻土区微地形和地质条件也对有机质含量具有重要的影响.

References

[1]  Wang Jie, Ye Baisheng, Zhang Shiqiang, et al. Changing features of CO2 fluxes in alpine meadow in the upper reaches of Shule River, Qilianshan[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 646-653. [王杰, 叶柏生, 张世强, 等. 祁连山疏勒河上游高寒草甸CO2通量变化特征[J]. 冰川冻土, 2011, 33(3): 646-653.]
[2]  Fang Jingyun, Liu Guohua, Xu Songling. Carbon pool of Chinese terrestrial ecosystem [C]//Wang Gencheng, Wen Yupu. Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes. Beijing: China Environmental Science Press, 1996: 109-128. [方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[C]//王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996: 109-128.]
[3]  Wang Genxu, Cheng Guodong, Shen Yongping. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication [J]. Journal of Glaciology and Geocryology, 2002, 24(6): 693-700. [王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土, 2002, 24(6): 693-700.]
[4]  Gao Junqin, Ouyang Hua, Zhang Feng, et al. Characteristics of spatial distribution of soil organic carbon in Zoige wetland[J]. Ecology and Environment, 2007, 16(6): 1723-1727. [高俊琴, 欧阳华, 张峰, 等. 若尔盖高寒湿地表层土壤有机碳空间分布特征[J]. 生态环境, 2007, 16(6): 1723-1727.]
[5]  Wu X, Zhao L, Chen M, et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2012, 23(2): 162-169.
[6]  Wu Jichun, Sheng Yu, Yu Hui, et al. Permafrost in the Middle-East section of Qilian Mountains(Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 426-432. [吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ): 多年冻土特征[J]. 冰川冻土, 2007, 29(3): 426-432.]
[7]  Wu Jinkui, Yang Qiyue, Ding Yongjian, et al. Variations and simulation of stable isotopes in precipitation in the Heihe River Basin[J], Environmental Science, 2011, 32(7): 1857-1866. [吴锦奎, 杨淇越, 丁永建, 等. 黑河流域大气降水稳定同位素变化及模拟[J]. 环境科学, 2011, 32(7): 1857-1866.]
[8]  Liu Nanwei, Yang Shihong, Liu Hongjie, et al. Physical Geography [M]. Beijing: Science Press, 2007: 551-556.
[9]  Zsolnay A. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3-4): 187-209.
[10]  Wagner D, Lipski A, Embacher A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592.
[11]  Wagner D, Gattinger A, Embacher A, et al. Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget [J]. Global Change Biology, 2007, 13(5): 1089-1099.
[12]  Soil Survey Staff. Soil Survey Investigations Report No. 42: Soil Survey Laboratory Manual, Version 3.0[Z]. Lincoln, NE: USDA-NRCS-NSSC, 1996.
[13]  Yue Guangyang, Zhao Lin, Zhao Yonghua, et al. Research advances of grassland ecosystem CO2 flux on Qinghai-Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 166 174. [岳广阳, 赵林, 赵拥华, 等. 青藏高原草地生态系统碳通量研究进展[J]. 冰川冻土, 2010, 32(1): 166-174.]
[14]  Johnson K D, Harden J, McGuire A D, et al. Soil carbon distribution in Alaska in relation to soil-forming factors[J]. Geoderma, 2011, 167-168: 71-84.
[15]  Li Tiantian, Ji Hongbing, Sun Yuanyuan, et al. Advances in researches on soil organic carbon storages and affecting factors in China [J]. Journal of Capital Normal University(Natural Science Edition), 2007, 28(1): 93-97. [李甜甜, 季宏兵, 孙媛媛, 等. 我国土壤有机碳储量及影响因素研究进展[J]. 首都师范大学学报(自然科学版), 2007, 28 (1): 93-97.]
[16]  Cannone N, Wagner D, Hubberten H W, et al. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica[J]. Geoderma, 2008, 144(1-2): 50-65.
[17]  Harden J W, Koven C D, Ping C L, et al. Field information links permafrost carbon to physical vulnerabilities of thawing[J]. Geophysical Research Letters, 2012, 39(15), doi: 10.1029/2012GL051958.
[18]  Ai Haijian. Analysis of affecting factors of soil water-retention and porositility[J]. Agricultural Research in the Arid Areas, 2002, 20(3): 75-79. [艾海舰. 土壤持水性及孔性的影响因素浅析[J]. 干旱地区农业研究, 2002, 20(3): 75-79.]
[19]  Ma Wei, Jin Huijun. Permafrost on a warming planet: Summary review of the Ninth International Conference on Permafrost in 2008[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 843-854. [马巍, 金会军. 正在变暖的地球上的多年冻土——2008年第九届国际冻土大会(NICOP)综述[J]. 冰川冻土, 2008, 30(5): 843-854.]
[20]  Zhang Tingjun. Progress in global permafrost and climate change studies [J]. Quaternary Sciences, 2012, 32(1): 27-38. [张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27-38.]
[21]  Wu Q, Zhang T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113(D13), doi: 10.1029/2007JD009539.
[22]  Romanovsky V E, Smith S L, Christiansen H H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007 2009: A synthesis[J]. Permafrost and Periglacial Processes, 2010, 21(2): 106-116.
[23]  Zhao L, Wu Q, Marchenko S S, et al. Thermal state of permafrost and active layer in Central Asia during the International Polar Year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.
[24]  Wu Q, Zhang T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010, 115(D9), doi: 10.1029/2009JD012974.
[25]  Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia[J]. Journal of Geophysical Research, 2004, 109(D5), doi: 10.1029/2003JD004245.
[26]  Wang Junfeng, Wang Genxu, Wu Qingbai. A study of CO2 fluxes from the high-cold swamp meadows with different degradation on the hinterland of Tibetan Plateau during growing season [J]. Journal of Glaciology and Geocryology, 2008, 30(3), 408-414. [王俊峰, 王根绪, 吴青柏. 青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要环境控制因子研究[J]. 冰川冻土, 2008, 30(3): 408-414.]
[27]  Zhang Y, Chen W, Riseborough D W. Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change [J]. Global and Planetary Change, 2008, 60(3-4): 443-456.
[28]  Zhang Y, Chen W, Riseborough D W. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850 2100[J]. Geophysical Research Letters, 2008, 35(2), doi: 10.1029/2007GL032117.
[29]  Ping C L, Michaelson G J, Jorgenson M T, et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1(9): 615-619.
[30]  Hugelius G, Tarnocai C, Broll G, et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions [J]. Earth System Science Data Discussions, 2012, 5: 707-733.
[31]  Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112(F2), doi: 10.1029/2006JF000631.
[32]  Wang Jiaoyue, Song Changchun, Wang Xianwei, et al. Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils [J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442-452. [王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2): 442-452.]
[33]  Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009, 459: 556-559.
[34]  Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1-2): 47-68.
[35]  Tarnocai C, Canadell J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23(2), doi: 10.1029/2008GB003327.
[36]  Schaefer K, Zhang T, Bruhwiler L, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B, 2011, 63(2): 165-180.
[37]  Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3), doi: 10.1088/1748-9326/7/3/035401.
[38]  Waldrop M P, Harden J W, Turetsky M R, et al. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska [J]. Soil Biology and Biochemistry, 2012, 50: 188-198.
[39]  Zhuang Q, He J, Lu Y, et al. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model[J]. Global Ecology and Biogeography, 2010, 19(5): 649-662.
[40]  Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle [J]. BioScience, 2008, 58(8): 701-714.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133